首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
正动力型锂离子电池关键技术涉及正极、负极、电解质(电解液)、隔膜、电池单体、电池组等产业链领域。其中,锂离子电池正极材料种类较多,主要包括钴酸锂、镍酸锂、锰酸锂、镍锰钴三元材料和磷酸铁锂等。磷酸铁锂具有循环寿命长、材料成本低等优势,是未来锂离子电池正极材料的重要发展方向。磷酸铁锂正极材料表面改性研究主要集中在离子掺杂、包覆修饰、复合合成等方面。因此,本专利分析的研究边界确定为锂离子电池正极材料磷酸铁锂改性技术。  相似文献   

2.
《金秋科苑》2010,(15):96-97
具有橄榄石型结构的磷酸铁锂(LIFEPO4)恰能满足理想的高安全高容量高功率锂电池的需要。磷酸铁锂的发现,被誉为标志着“锂离子电池一个新时代的到来”。磷酸铁锂无毒、对环境友好、原料丰富、比容量与库仑效率高、充放电平台平稳、循环性能好、热稳定性高、极安全可靠,非常适合于对安全性、循环寿命、功率特性、使用成本等极为敏感的大型电池应用领域。  相似文献   

3.
外部短路和过放电是影响锂离子电池安全的两个重要因素。本研究以锂离子电池40Ah为对象,进行过放电测试;以锂离子电池5Ah为对象,进行过外部短路测试,测试结果证实了外部短路和过放电对锂离子电池的安全性影响很大。提出一点建议,防止锂离子电池过放电电行为发生;提出两点建议,防止锂离子电池外部短路行为发生。  相似文献   

4.
《科技风》2020,(12)
锂离子电池诞生距今已有几十年的历史,文章采用了镍钴锰酸锂三元材料为正极材料,人工石墨为负极材料,制成18650型大功率锂离子电池,可以用于新能源汽车,其中5C放电容量可以达到95%以上。1.0C循环300次以上仍可以保持90%以上的容量,显示电池具有很大的应用潜力。  相似文献   

5.
正本文以CNABS和DWPI专利数据库收录的专利为样本,从专利的视角对磷酸铁锂正极材料中的石墨烯技术进行的统计和标引,分析了磷酸铁锂正极材料中石墨烯技术的发展路线以及代表公司合肥国轩高科的技术发展路线,并从中得到一定的规律。石墨烯与锂离子电池均是近些年的研究热点,石墨烯由于其独特的结构为锂离子电池材料的高性能的突破带来了可能。石墨烯在锂离子电池中的应用比较多元化,不仅可以将  相似文献   

6.
《科技风》2020,(25)
随着运载火箭技术的发展,国内外越来越多采用锂离子电池作为运载火箭供电的电源。然而锂离子电池在低温环境条件下,其放电性能会发生明显下降,因此运载火箭锂离子电池组一般采用加热和保温的措施以保证其在低温环境条件下供电输出的可靠性。目前运载火箭锂离子电池组加热时长的预计主要基于原有实验数据做出的大致估算,具有很大的偏差,在运载火箭发射前不能实现加热过程的精准预测。本文针对某运载火箭锂离子电池组构建了加热模型,通过对具有加热设计的运载火箭锂离子电池组进行了加热实验,利用加热模型对加热温升数据进行了拟合分析,获得了该型号锂离子电池组加热过程参数精准预测的方法。通过该方法的应用,可以实现运载火箭发射前对锂离子电池组加热时长、保温加热电流等的精准预测,提高运载火箭发射前的准备效率。将该方法应用于运载火箭地面发射系统,可以实现未来运载火箭锂离子电池组智能加热和加热剩余时间等的实时预测,提高运载火箭发射装备的智能化水平。  相似文献   

7.
锂离子电池的应用性能以及使用效果高于传统的电池,锂离子电池的电能以及质量之间的比值较高,具有良好的维持电能的作用。分析锂离子电池模组的充电特性,分析在不同环境温度之下的放电特性,对其进行分别的测试分析,可以确定锂离子电池的电压会随着电压的升高呈现恒定状态、电流会呈现下降并且保持恒定的趋势。在进行放电处理中,锂离子电池电压以及电流均会呈现显著的下降趋势,而环境温度是锂离子电池放电性能的重要影响因素。  相似文献   

8.
《科技风》2020,(1)
近年来,钛酸锂基锂离子电池因其低温性能好,循环寿命长,安全特性高等优势受到了极大地关注。本文对比了以锰酸锂(LMO)、三元材料(NCM)、钴酸锂(LCO)、磷酸铁锂(LFP)为正极材料的钛酸锂基锂离子电池的电性能;结合市场需求,分析了不同正极体系的钛酸锂基锂离子电池的应用方向。  相似文献   

9.
锂离子电池环境安全试验部分主要规定了电池的低气压、温度循环、振动、加速度冲击、跌落、应力消除、高温等与“环境”有关的安全试验项目,锂离子电池的低气压、温度循环、振动、加速度冲击、跌落试验后需要进行一次放电充电循环,以模拟锂离子电池遭受相应的应力后用户继续尝试使用该锂离子电池时的安全性。  相似文献   

10.
锂离子电池具有高重量比能量的突出优点,但至今尚未得到电动汽车市场认可。除了价格高和安全性隐患是锂离子动力电池众所周知的上市阻力外,还有高内阻、低温时容量快速下降、耐过充电和过放电能力差。这些因素使电动车起动性能差、行程没有预期的长、运行时温升高,并且电池组使用寿命大幅度缩短。对锂离子动力电池要尽可能实事求是地评价它的优点和缺点,同时要加强基础研究,开发新的电极材料,使锂离子动力电池的性能满足市场的要求。  相似文献   

11.
近年来,由于可折叠电子屏幕的商业化成功加快了锂离子柔性电池开发进程。文献报道的部分柔性电池虽然在一定程度上实现可折叠化,但是其容量与抗拉伸性能较低。开发高容量、高机械强度柔性锂离子电池迫在眉睫。以二氧化锡为研究对象,采用溶胶凝胶涂覆法制备了碳纤维为导电集流体,二氧化锡为活性材料的高容量柔性锂离子电池,测试表明材料在1C电流密度下进行测试充放电性能,循环100次以后得到631 mAh g-1容量,高于目前的商业化石墨碳容量。  相似文献   

12.
索尼公司为电动汽车开发的可连续充电的锂离子电池。它是由8个锂离子电池串联为一个组件,该种电池的能量密度比铅酸电池大3倍·比镍型电池大1.5~2倍。同等重量的蓄电池,锂离子电池可提供1.5~3倍的行驶里程。该电池寿命为1200次,自动放电率为lO%,充电密度效率达95%。  相似文献   

13.
如何解决电池的安全性、容量、使用寿命和比能量等问题已成为制约锂离子电池发展的关键。天津大学化工学院唐致远教授承担的“大容量、高安全性锂离子电池的关键技术及其应用”项目,经过十几年的研究与开发,应用人工神经网络理论和容错控制技术,在理论研究和产业化过程中解决了许多关键技术问题,特别是在大容量、高安全性锂离子电池及其相关材料的制备方面取得了创新性的突破和进展。  相似文献   

14.
锂离子电池因其突出优点,目前在众多领域广泛应用,对电池运行状态的管理变得越来越重要。锂离子电池组管理系统主要功能有采集电池的电压、电流、温度数据,准确估计电池的剩余电量(SOC),防止过充电和过放电和均衡管理等多个方面。在电池管理多个环节中需要检测电流值,霍尔传感器低成本、高精度、小封装以及良好的隔离特性使得其是一个很好的选择。  相似文献   

15.
锂离子动力电池在实际的应用中与传统电池相比具有明显的性能优势,如放电电流密度大,容量大电压高等参数特点,目前越来越多的被用于各种用电设备中。在锂离子动力电池的使用中安全问题也逐渐凸显出来,由于锂离子电池对过充电现象的敏感度较高,所以对锂离子动力电池的正负极材料的选用以及电池的制造工艺和电路控制都提出了更高的要求,一次来降低或避免电池使用过程的出现的各种安全问题。目前,PTC型热敏电阻在锂离子动力电池的保护电路控制中得到了广泛的应用。通过在电路中加入PTC可对电池充放电的电流、电压等技术参数实时监测,有效提高电池充放电循环次数及使用能效。  相似文献   

16.
目前世界上已见报道的圆柱形单体锂离子电池最大容量为100安培小时,而天津大学研制的电池"巨无霸"单体容量达400安培小时,目前已经通过中试,成功投入小批量生产.  相似文献   

17.
目前世界上已见报道的圆柱形单体锂离子电池最大容量为100安培小时,而天津大学研制的电池“巨无霸”单体容量达400安培小时,目前已经通过中试,成功投入小批量生产。  相似文献   

18.
随着电动汽车的快速发展,对锂离子电池的负极材料有了越来越高的要求。目前商用锂离子电池的负极材料还是以石墨为主,但是石墨负极的理论比容量较低(为372 mAh/g),严重限制了锂离子电池的能量密度。硅的理论比容量高达4 200 mAh/g,被认为是最有前途的锂离子电池负极材料之一。然而,硅负极材料在锂化的过程中会伴随着巨大的体积膨胀效应,导致电极材料破裂和粉碎,从而大幅度降低电池的循环稳定性,并且硅的电导率不理想,也限制了其倍率性能和循环性能。用石墨烯对硅负极材料进行改性,有望缓解其电极材料的体积膨胀以及导电性差的难题。本文重点阐述了石墨烯对于硅基负极材料的性能提升机理,期望对未来石墨烯改性硅基负极材料的制备和研究提供思路。  相似文献   

19.
目前,二次电池的比能量已经成为制约电动车技术和先进便携式电子产品发展的瓶颈之一.商品锂离子电池的能量密度一般小于200 Wh/kg,受正极材料比容量的限制,锂离子电池能量密度的提升空间有限,很难满足电动汽车等技术对长续航电池的需求.因此,研究和开发具有更高能量密度的锂电池体系就显得尤为重要.  相似文献   

20.
<正>技术原理作为锂离子电池中的重要组成部件,隔膜的性能直接影响锂离子电池的容量、内阻、循环性能和安全性能。影响锂离子电池隔膜性能的主要因素包括:隔膜材料的厚度均匀性、力学性能、透气性、电解液润湿性、化学稳定性、安全性等几个方面。(1)厚度均匀性:隔膜通常为二维平面结构,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号