首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

2.
In this paper, an adaptive distributed control protocol is proposed for non-affine multi-agent system with nonlinear dead-zone input and state constraints under the condition of directed topology. In order to overcome the difficulties caused by non-affine terms in the system, the nonlinear dynamics system is transformed. Then, the neural network technology is introduced to approximate the unknown non-affine terms for the obtained system. State constraints and dead-zone input are common system problems. In order to solve these problems, the barrier Lyapunov function is introduced in this paper. According to the barrier Lyapunov function and backstepping method, an adaptive distributed controller is designed, so that state variables do not violate constraint bounds and the system is not affected by dead-zone input. By Lyapunov stability theory, it is proved that the signals of each follower are cooperative semi-global uniform ultimate boundedness (CSUUB), and the outputs of the followers track the output of the leader. Simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

3.
The purpose of this study is to enhance the transient performance and mitigate the possible boundary-crossing issue during the design of a neural network-based intelligent prescribed performance control for robotic manipulators that suffer from input saturation. Initially, an auxiliary system is created utilizing the saturation signal, which is then used to modify the prescribed performance boundaries when saturation takes place. This ensures that the tracking errors adhere to the performance constraints even if the available control effort is limited. To further enhance the transient performance of the closed-loop system, a composite learning-based online identification scheme employing a Gaussian function to adaptively adjust the learning rate is utilized instead of a fixed-learning-rate weight updating law to train the neural network. This approach facilitates the reduction of the undesired weight oscillations at the beginning of the control process when the neural network is not sufficiently trained. Lastly, the stability of the closed-loop system is demonstrated by applying the Lyapunov approach, and simulation results support the effectiveness of the identification and control schemes proposed in this study.  相似文献   

4.
This article studies the neuroadaptive full-state constraints control problem for a class of electromagnetic active suspension systems (EASSs). First, the original constraint system with arbitrary initial values is transformed into a new constraint system with zero initial values by using the shift function method. Then, a new kind of cotangent-type nonlinear state-dependent transition function is constructed to solve the asymmetric time-varying full-state constraints control problem, which eliminates the limitation that the virtual controller needs to satisfy the feasibility conditions in the previous full-state constraints control based on Barrier Lyapunov Function (BLF) and Integral BLF. Furthermore, the neural networks (NNs) are used as nonlinear function approximators to deal with the unknown nonlinear dynamics of EASSs, a neuroadaptive full-state constraints control design method is proposed under the Backstepping recursive design framework. Finally, the effectiveness of the proposed method is verified by a simulation of EASSs with road disturbances.  相似文献   

5.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

6.
In this paper, a novel adaptive control is investigated for robotic manipulators to unify the study of predefined performance control, input saturation and dynamic uncertainties. The focus is to achieve three user-defined performance indices of the closed-loop system with simultaneous existence of input constraints and model uncertainties, that is overshoot, precision within prescribed finite time and predefined steady-state error. To ensure the performance constraints, an error transformation is constructed for the manipulators by two auxiliary functions and embedded into the barrier Lyapunov function (BLF) in the backstepping analysis. Furthermore, the adaptive control strategies and the adaptive anti-saturation compensator are, respectively, developed to address the dynamics uncertainties and the actuator saturation. The Lyapunov analysis is employed to show that all the closed-loop signals are bounded. Finally, simulation studies and experiments on Baxter robot demonstrate the effectiveness of the proposed method.  相似文献   

7.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

8.
This paper is devoted to adaptive neural network control issue for a class of nonstrict-feedback uncertain systems with input delay and asymmetric time-varying state constraints. State-related external disturbances are involved into the system, and the upper bounds of disturbances are assumed as functions of state variables instead of constants. Additionally, during the approximations of unknown functions by neural networks, the online computation burdens are declined sharply, since the norms of neural network weight vectors are only estimated. In the process of dealing with input delay, an auxiliary function is applied such that the conditions for time delay are more general than the ones in existing literature. A novel adaptive neural network controller is designed by constructing the asymmetric barrier Lyapunov function, which guarantees that the output of system has a good tracking performance and the state variables never violate the asymmetric time-varying constraints. Finally, numerical simulations are presented to verify the proposed adaptive control scheme.  相似文献   

9.
The main objective of this paper is to present a non-predictive method in the design of nonlinear multi-input multi-output (MIMO) control systems with the presence of constraints that are determinant in practical conditions, namely, the frequency bandwidth limitation of the actuation system and saturation boundaries in control commands. If these constraints are applied in the non-predictive control design problem, it is not possible to simultaneously satisfy Lyapunov stability and actuation constraints, analytically. Instead of model-predictive-based algorithms, which in most cases are computationally expensive, this paper proposes an algorithm based on synthetic Lyapunov stability. In this technique, by defining an intelligent filter applied to the system desired trajectories, defining intelligent proximity coefficients in decoupled inequalities resulting from Lyapunov stability, and determining the admissible boundaries of control commands, a space of regulatory parameters is generated. By appropriately adjusting these parameters based on statistical analysis conducted on the overall dynamics of the system, the Lyapunov stability is guaranteed, and the mentioned control constraints are not violated. In summary, the proposed control algorithm includes the formulation of discrete-time dynamics of sliding functions, the presentation of the procedure of defining and adjusting the control algorithm parameters with the proposed synthetic stability criterion, and the calculation of control inputs based on constraints imposed on the problem. Finally, the algorithm is applied to a cart moving in the X-Y plane, including two rigid cooperative arms that are carrying a load. The most important features of synthetic Lyapunov stability compared to the model predictive-based method are its small computational load and its acceptable performance in satisfying both the Lyapunov stability conditions and determinant control constraints in more realistic situations.  相似文献   

10.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

11.
In this paper, a novel adaptive integrated guidance and control (IGC) scheme is proposed for skid-to-turn (STT) missile with partial state constraints and actuator faults. Considering the strict-feedback form of the IGC model, the dynamic surface control (DSC) approach is adopted to design the IGC scheme. To prevent the attack angle, sideslip angle and velocity deflection angle from violating the constraints, the barrier Lyapunov function (BLF) and modified saturation function are employed in the IGC design procedure. Moreover, an auxiliary system is constructed to remove the adverse effects that caused by the modified saturation function. The adaptive laws are constructed to estimate the actuation effectiveness of actuators and the upper bounds of lumped uncertainties in the IGC model. It is theoretically shown that all signals in the closed-loop system are bounded while the state constraints are not violated in presence of actuator faults and uncertainties. Numerical simulation results are presented to verify the effectiveness and robustness of the proposed IGC scheme.  相似文献   

12.
This paper uses the directed communication topology to investigate the finite-time error constraint containment control for multiple Ocean Bottom Flying Node (OBFN) systems with thruster faults. The OBFN is a benthic Autonomous Underwater Vehicle (AUV), which has been used to explore submarine resources. The model uncertainties, velocity error constraint, external disturbances, and thruster faults of OBFNs motivate the design of containment controller. Moreover, some followers could obtain the states of leader OBFNs. We designed the command filter and the input signal is a hyperbolic tangent function. The virtual velocity error command is generated to follow the velocity error. Then the novel velocity error constraint distributed control algorithm is developed. Furthermore, for the problem of input saturation, by designing a stable anti-saturation compensator, an improved containment algorithm is proposed. It is proved that both the proposed approaches can converge the containment errors towards zero through Lyapunov theory in finite time, which means the followers can reach the convex hull formed by leaders in finite time. Finally, simulation results demonstrate the effectiveness of the two strategies.  相似文献   

13.
This study presents a new framework for merging the Adaptive Fuzzy Sliding-Mode Control (AFSMC) with an off-policy Reinforcement Learning (RL) algorithm to control nonlinear under-actuated agents. In particular, a near-optimal leader-follower consensus is considered, and a new method is proposed using the framework of graphical games. In the proposed technique, the sliding variables’ coefficients are considered adaptively tuned policies to achieve an optimal compromise between the satisfactory tracking performance and the allowable control efforts. Contrary to the conventional off-policy RL algorithms for consensus control of multi-agent systems, the proposed method does not require partial knowledge of the system dynamics to initialize the RL process. Furthermore, an actor-critic fuzzy methodology is employed to approximate optimal policies using the measured input/output data. Therefore, using the tuned sliding vector, the control input for each agent is generated which includes a fuzzy term, a robust term, and a saturation compensating term. In particular, the fuzzy system approximates a nonlinear function, and the robust part of the input compensates for any possible mismatches. Furthermore, the saturation compensating gain prevents instability due to any possible actuator saturation. Based on the local sliding variables, the fuzzy singletons, the bounds of the approximation errors, and the compensating gains are adaptively tuned. Closed-loop asymptotic stability is proved using the second Lyapunov theorem and Barbalat's lemma. The method's efficacy is verified by consensus control of multiple REMUS AUVs in the vertical plane.  相似文献   

14.
This paper investigates the synchronous control problem for a class of flexible telerobotic systems subject to system uncertainties and communication constraints. In view of the asymmetric time-varying communication delays, an adaptive time-delay estimator is designed to reduce the impacts of delays on the system. Moreover, by combining the neural networks and parameter adaptive method, the uncertainties of system dynamics are estimated and compensated. Based on these efforts, a new adaptive compensation control protocol is proposed. Additionally, input quantization in network control induced chattering phenomenon and unknown parameters is also dealt with by the adaptive compensation method. A useful characteristic of this paper is that the “complexity explosion” problem caused by the backstepping technique is circumvented effectively. Finally, sufficient conditions are derived for the synchronous control of the master-slave flexible telerobotic system under Lyapunov stability theory. A numerical example of flexible-joint robotic system is provided to illustrate the effectiveness of the proposed control schemes.  相似文献   

15.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

16.
In this paper, a leader-follower formation control scheme of multiple underactuated surface vessels (USVs) is proposed for trajectory tracking, which not only solves the line of sight (LOS) and angle tracking errors within the prescribed performance, but also avoids collisions and maintains the communication connection distance. To achieve the prescribed performance and converge the tracking errors in finite time, a tan-type barrier Lyapunov function (TBLF) is introduced into the designed control strategy. In the process of formation control design, the measured values of the LOS range and angle are available, and the velocity of the leader is estimated using a high-gain observer. Next, a novel self-structuring neural network (SNN) is proposed to estimate the uncertain dynamics induced by the model uncertainties and environmental disturbances, and the computation amount is reduced by optimizing the number of neurons. Combining coordinate transformation and dynamic surface control (DSC), an adaptive NN controller with prescribed performance is proposed. The Lyapunov analysis shows that, although uncertain dynamics exist, the tracking errors can converge to a small region in finite time while achieving the prescribed performance, avoiding collisions, and maintaining the communication distance. In the closed-loop system, all signals are practical finite-time stable (PFS). Finally, the effectiveness of the proposed scheme is illustrated through a numerical simulation.  相似文献   

17.
Aiming at the consensus tracking control problem of multiple autonomous underwater vehicles (AUVs) with state constraints, a new neural network (NN) and barrier Lyapunov function based finite-time command filtered backstepping control scheme is proposed. The finite-time command filter is utilized to filtering the virtual control signal, the error compensation signal is constructed to eliminate filtering error due to the use of filter, and the NN approximation technology is used to deal with the unknown nonlinear dynamics. The control scheme can guarantee that the consensus tracking errors of position states converge into the desired neighborhood of the origin in finite-time while not exceeding the predefined constraints. Finally, simulation studies prove the feasibility of proposed control algorithm.  相似文献   

18.
This paper develops a robust adaptive neural network (NN) tracking control scheme for a class of strict-feedback nonlinear systems with unknown nonlinearities and unknown external disturbances under input saturation. The radial basis function NNs with minimal learning parameter (MLP) are employed to online approximate the uncertain system dynamics. The adaptive laws are designed to online update the upper bound of the norm of ideal NN weight vectors, and the sum of the bounds of NN approximation errors and external disturbances, respectively. An auxiliary dynamic system is constructed to generate the augmented error signals which are used to modify the adaptive laws for preventing the destructive action due to the input saturation. Moreover, the command filtering backstepping control method is utilized to overcome the shortcoming of dynamic surface control method, the tracking-differentiator-based control method, etc. Our proposed scheme is qualified for simultaneously dealing with the input saturation effect, the heavy computational burden and the “explosion of complexity” problems. Theoretical analysis illuminates that our scheme ensures the boundedness of all signals in the closed-loop systems. Simulation results on two examples verify the effectiveness of our developed control scheme.  相似文献   

19.
This paper explores the design of an anti-saturation adaptive finite-time control strategy with the neural network (NN) technique for the space circumnavigation mission. Before executing the controller design, the analytical solutions of the desired angular velocity and its derivative of the active spacecraft are calculated. Since there are uncertain saturation constraints on control forces and moments in the actual propulsion system, an auxiliary system compensated by an adaptive NN is adopted. The modified auxiliary system no longer needs the precise output values of the actuators. Besides, the hyperbolic tangent function is introduced to design the weight update law for the NN compensator, so that the derivative of the weight estimator will not be amplified by the quadratic of states when the system states are large. It is proved that tracking errors of the system states can converge to a residual set of the origin in finite time. Simulation results show that the maximum amplitudes of the control signals are greatly reduced compared to the classical non-singular terminal sliding-mode control scheme, and that the neural-based compensator can significantly weaken the overshoot and chattering.  相似文献   

20.
This paper presents an interval observer-based fault detection (FD) strategy for discrete-time T–S fuzzy systems with measurement errors. The system and measurement outputs are selected as the premise variables of plant and observer respectively. The bounds of mismatch items caused by the measurement errors are established by covering matched region, mismatched left adjacent region and right adjacent region. Piecewise Lyapunov function, taking full account of possible transitions, is employed to drive observer design condition. FD is turned into optimization problem with disturbance attenuation, fault sensitivity and nonnegativity constraints. The decision is implemented by judging whether zero is excluded from the residual interval. Finally, simulation is explored to verify the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号