首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

3.
The existing studies on prescribed-time control cannot directly deal with nonlinear functions which don’t satisfy Lipschitz growth conditions. No results are available for prescribed-time containment control of pure-feedback UNMASs with prescribed performance. Therefore, completely unknown nonlinear function, prescribed-time tracking of system states and prescribed performance of containment errors are simultaneously considered in this paper. Fuzzy logic systems are utilized to approximate completely unknown nonlinear function. Prescribed-performance function is introduced and further incorporated into a novel speed function. Combining the proposed speed function and barrier Lyapunov function, this article presents a novel adaptive fuzzy prescribed-time containment control method which can guarantee, under prescribed performance, all followers converge to a convex formed by dynamic leaders in a prescribed time. Moreover, all tracking errors converge to predefined regions in a prescribed time. The effectiveness of the proposed prescribed-time containment control method are confirmed by strict proof and simulation.  相似文献   

4.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

5.
This paper addresses the adaptive fuzzy event-triggered control (ETC) problem for a class of nonlinear uncertain systems with unknown nonlinear functions. A novel ETC approach that exhibits a combinational triggering (CT) behavior is proposed to update the controller and fuzzy weight vectors, achieving the non-periodic control input signals for nonlinear systems. A CT-based fuzzy adaptive observer is firstly constructed to estimate the unmeasurable states. Based on this, an output feedback ETC is proposed following the backstepping and error transformation methods, which ensures the prescribed dynamic tracking (PDT) performance. The PDT performance indicates that the transient bounds, over-shooting and ultimate values of tracking errors are fully determined by the control parameters and functions chosen by users. The closed-loop stability is guaranteed under the framework of impulsive dynamic system. Besides, the Zeno phenomenon is circumvented. The theoretical analysis indicates that the proposed scheme guarantees control performance while considerably reducing the communication resource utilization and controller updating frequency. Finally, the numerical simulations are conducted to verify the theoretical findings.  相似文献   

6.
This paper investigates the decentralized tracking control problem for a class of strict-feedback interconnected nonlinear systems with unknown parameters, where the system states are unmeasurable and the interconnections are unknown. Different from the existing results, where the output is available all the time, we consider the case that the output is only available at the sampled instants, which means the failure of existing methods. By introducing a kind of sampled observer for each subsystem, the system states and unknown parameters are jointly estimated. Based on which, a totally decentralized output feedback control scheme is developed to achieve the desired tracking performance by applying backstepping technique, where a compensation mechanism is utilized to address the unknown interconnections from other subsystems. Subsequently, by using Lyapunov stability theory, it is proved that all the signals in the closed-loop system are bounded and the tracking errors converge to an adjustable neighbourhood of the origin. Finally, an example is used to illustrate the effectiveness of the proposed method.  相似文献   

7.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper proposes a robust adaptive control strategy for a class of state-constrained uncertain nonlinear systems with prescribed transient and steady-state behavior. The prescribed tracking performance can be characterized by constraints on an output tracking error. Both state and output constraints are achieved by bounding integral barrier Lyapunov functions in the backstepping procedure. A robust adaptive term is designed to compress auxiliary system uncertainties without the knowledge of their bounds. The satisfaction of control constraints and tracking error convergence are verified by theoretical analysis and are illustrated by simulation results.  相似文献   

9.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

10.
This paper addresses the problem of robust adaptive attitude tracking control for spacecraft with mismatched and matched uncertainties. The idea of disturbance estimation and compensation is introduced into the control design. First, finite-time disturbance observers are developed for different channels of spacecraft based on barrier functions for achieving finite-time asymptotic estimates of unknown bounded uncertainties in the system. Second, a class of prescribed performance functions is considered in the design of the barrier function. The spacecraft attitude adaptive tracking control strategy with finite-time convergence capability and prescribed performance is proposed based on the designed finite-time disturbance observers and barrier function. Finally, the theoretical findings are verified by numerical simulations and compared with the simulation results of existing methods.  相似文献   

11.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

12.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

13.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

14.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

15.
To ensure better performance and simultaneously save resources, an event-triggered adaptive command filtered dynamic surface control (ACFDSC) method for uncertain stochastic nonstrict-feedback nonlinear systems with dynamic output constraints and prescribed performance is designed in this article. Firstly, with the help of reduced-order K-filters, linearly parameterized neural networks and specific coordinate transformation technique, the unmeasurable states, nonlinearities, two types of unmodeled dynamics and output constraints are dealt with respectively. Then, an event-triggered ACFDSC strategy is proposed to ensure that the tracking error reaches a specific bound within a finite time. By introducing the compensated signal into the complete Lyapunov function, and with the assistance of the compact set defined in the stability analysis, all signals are strictly demonstrated to be semi-globally uniformly ultimately bounded. The simulation results verify the effectiveness of the proposed method.  相似文献   

16.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

17.
In this paper, the adaptive prescribed performance tracking control of nonlinear asymmetric input saturated systems in strict-feedback form is addressed under the consideration of model uncertainties and external disturbances. A radial basis function neural network (RBF-NN) is utilized to handle the model uncertainties. By prescribed performance functions, the transient performance of the system can be guaranteed. The continuous Gaussian error function is represented as an approximation of asymmetric saturation nonlinearity such that the backstepping technique can be leveraged in the control design. Based on the Lyapunov synthesis, residual function approximation inaccuracies and external disturbances are compensated by constructed adaptive control laws. As a consequence, all the signals in the closed-loop system are uniformly ultimately bounded and the tracking errors bounded by prescribed functions converge to a small neighbourhood of zero. The proposed method is applied to the autonomous underwater vehicles (AUVs) with extensive simulation results demonstrating the effectiveness of the proposed method.  相似文献   

18.
This paper investigates the problem of asymptotic tracking control of nonlinear robotic systems with prescribed performance. The control strategy is developed based on a modified prescribed performance function (PPF) to guarantee the transient behavior, while the requirements on the accurate initial tracking error in the classical PPF can be remedied. The fuzzy logic system (FLS) is used to approximate the unknown dynamics. In the existing PPF based adaptive control schemes with FLSs, the tracking error does not achieve asymptotic convergence. To address this issue, a robust integral of the sign of the error (RISE) term is incorporated into the control design to reject the FLS approximation errors and external disturbances, such that the asymptotic convergence is achieved. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control scheme.  相似文献   

19.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

20.
This research addresses the problem of finite-time tracking error constrained control for a class of non-strict stochastic nonlinear systems with unknown time-varying powers and multiple power terms. Based on the conversion from constrained tracking error to an unconstrained signal with the same effect, by adopting the backstepping technique together with adaptive neural network control, a controller with upper and lower time-varying power bounds is designed to meet the prescribed performance control scheme in finite-time. Finally, two simulation examples are shown to verify the effectiveness of the commendatory control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号