首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies centralized fusion estimation over a wireless sensor-actuator network, where packet dropouts cannot be observed by the fusion estimator. For such a system, we obtain an optimal linear fused estimation of system states, also known as optimal linear estimator. Then, we establish a necessary and sufficient condition for the stability of the optimal linear estimator. Finally, we show that the estimation performance is monotonically decreasing with respect to the observation packet-arrival rate. By analyzing a sequence that converges to the covariance of the optimal linear estimator, an analytical relationship between the estimation performance and the control packet-arrival rate is obtained. Simulation examples are given to illustrate the main results.  相似文献   

2.
In this work, the problem of sliding mode control is considered for a class of Markovian jumping systems. The packet dropout may happen when the state information is transmitted from the sensor to the controller. By means of an estimator for lost signals, an integral-like sliding function is constructed. And then, a sliding mode controller involving in dropout probability is designed such that the effect of packet losses can be effectively attenuated. Besides, the analysis on both the stability of sliding mode dynamics and the reachability of sliding surface are made. Finally, the numerical simulation results are given.  相似文献   

3.
In this paper, the state estimation problem for discrete-time networked systems with communication constraints and random packet dropouts is considered. The communication constraint is that, at each sampling instant, there is at most one of the various transmission nodes in the networked systems is allowed to access a shared communication channel, and then the received data are transmitted to a remote estimator to perform the estimation task. The channel accessing process of those transmission nodes is determined by a finite-state discrete-time Markov chain, and random packet dropouts in remote data transmission are modeled by a Bernoulli distributed white sequence. Using Bayes’ rule and some results developed in this study, two state estimation algorithms are proposed in the sense of minimum mean-square error. The first algorithm is optimal, which can exactly compute the minimum mean-square error estimate of system state. The second algorithm is a suboptimal algorithm obtained under a lot of Gaussian hypotheses. The proposed suboptimal algorithm is recursive and has time-independent complexity. Computer simulations are carried out to illustrate the performance of the proposed algorithms.  相似文献   

4.
This paper studies the distributed Kalman consensus filtering problem based on the event-triggered (ET) protocol for linear discrete time-varying systems with multiple sensors. The ET strategy of the send-on-delta rule is employed to adjust the communication rate during data transmission. Two series of Bernoulli random variables are introduced to represent the ET schedules between a sensor and an estimator, and between an estimator and its neighbor estimators. An optimal distributed filter with a given recursive structure in the linear unbiased minimum variance criterion is derived, where solution of cross-covariance matrix (CCM) between any two estimators increases the complexity of the algorithm. In order to avert CCM, a suboptimal ET Kalman consensus filter is also presented, where the filter gain and the consensus gain are solved by minimizing an upper bound of filtering error covariance. Boundedness of the proposed suboptimal filter is analyzed based on a Lyapunov function. A numerical simulation verifies the effectiveness of the proposed algorithms.  相似文献   

5.
The consensus tacking problem for multi-agent systems with a leader of none control input and unknown control input is studied in this paper. By virtue of the relative state information of neighboring agents, state estimator and disturbance estimator are designed for each follower to estimate the system states and exogenous disturbance, respectively. Meanwhile, a novel control protocol based on two estimators is designed to make tracking error eventually converge to zero. Furthermore, the obtained results are further extended to the leader with unknown control input. A novel state estimator with adaptive time-varying gain is proposed such that consensus tracking condition is independent of the Laplacian matrix with regard to the communication topology. Finally, two examples are presented to verify the feasibility of the proposed control protocol.  相似文献   

6.
This paper deals with the pole-placement-type robust adaptive control of continuous linear systems in the presence of bounded noise and a common class of unmodeled dynamics provided that two estimation schemes are used in parallel. Both estimation schemes are introduced in order to minimize the plant identification error by selecting, as plant parameter estimates, a convex combination of both parameter estimates which leads to the selection of one of the estimation schemes, via a switching rule, on time intervals of at least a minimum prefixed residence duration. The weights of the individual parameter vector estimates are provided at each time by an optimization or suboptimization scheme for a quadratic loss function of the possibly filtered tracking error and/or control input. The robust stability of the overall adaptive scheme is ensured by an adaptation relative dead zone which takes into account the contribution of the unmodeled dynamics and bounded noise. The basic results are derived for two different estimation strategies which have either a shared regressor with the plant or individual regressors for the input contribution and its contributed derivatives. In this second case, the plant input is obtained from a similar convex combination rule as the one used for the estimators in the first approach. An extension of the basic strategies is also pointed out including a combined use of the (sub) optimization scheme with a supervisor of past measures for the on-line calculation of the estimator weights in the convex combination. Finally, the extension of the scheme for the use of any number of parametrical estimators is focused on.  相似文献   

7.
Many dynamical systems are continuous-time non-square with unknown mismatched input and output disturbances. For such systems, a universal on-line robust optimal tracking control is often desirable. In this paper, the conventional proportional-integral-differential (PID) controller is utilized as a fictitious PID filter to shape the tracking error in the frequency-domain using a quadratic performance index as a weighting function, such that the robust PID-shaped PI tracker integrated with the equivalent input disturbance (EID) estimator is established to carry out the on-line robust optimal tracking control of the general disturbed system. The benefits and discrepancies of the proposed compensation improvement mechanism over the conventional optimal trackers for continuous-time non-square systems with/without unknown mismatched input and output disturbances are listed as follows: (i) It develops a new net EID estimator without any previously established constraints on the dimensions of the system and on the disturbances; (ii) It provides an efficient estimated-state-feedback-based EID estimator in contrast to the conventional output-feedback-based EID estimators; (iii) It is able to carry out on-line EID estimation of the tracking errors for systems with endogenous/exogenous output disturbances; (iv) It is a universal tracker which can be simply implemented as a plug-in EID estimator for most servo systems, to improve the performance of any existing observers/trackers which are not allowed to be removed from the system. The advantages of the proposed method over two existing outstanding approaches reported in the literature are pointed out using illustrative examples.  相似文献   

8.
This paper studies the formation-containment control for multi-robot systems with two-layer leaders in the presence of parametric uncertainties, input disturbances and directed interaction topologies. To cope with the aforementioned issues, we establish a novel formation-containment control framework, where the analysis of the systems is carried out step by step. A hierarchical controller–estimator (HCE) algorithm, containing distributed sliding-mode estimators in each sub-algorithm, is proposed for the two-layer leaders system. Moreover, by invoking finite-time stable and input-to-state stable theories, the sufficient conditions for convergence of the proposed HCE algorithm are presented. Finally, numerous simulations are performed to demonstrate the validity of the theoretical results.  相似文献   

9.
This paper studies the asynchronous state fusion estimation problem for multi-sensor networked systems subject to stochastic data packet dropouts. A set of Bernoulli sequences are adopted to describe the random packet losses with different arriving probabilities for different sensor communication channels. The asynchronous sensors considered in this paper can have arbitrary sampling rates and arbitrary initial sampling instants, and may even sample the system non-uniformly. Asynchronous measurements collected within the fusion interval are transformed to the fusion time instant as a combined equivalent measurement. An optimal asynchronous estimation fusion algorithm is then derived based on the transformed equivalent measurement using the recursive form of linear minimum mean squared error (LMMSE) estimator. Cross-correlations between involved random variables are carefully calculated with the stochastic data packet dropouts taken into account. A numerical target tracking example is provided to illustrate the feasibility and effectiveness of the proposed algorithm.  相似文献   

10.
The paper proposes a decentralized state estimation method for the control of network systems, where a cooperative objective has to be achieved. The nodes of the network are partitioned into independent nodes, providing the control inputs, and dependent nodes, controlled by local interaction laws. The proposed state estimation algorithm allows the independent nodes to estimate the state of the dependent nodes in a completely decentralized way. To do that, it is necessary for each independent node of the network to estimate the control input components computed by the other independent nodes, without requiring communication among the independent nodes. The decentralized state estimator, including an input estimator, is developed and the convergence properties are studied. Simulation results show the effectiveness of the proposed approach.  相似文献   

11.
This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.  相似文献   

12.
This paper studies the bipartite consensus tracking (BCT) problem of the networked Lagrangian system (NLS) with intermittent interactions, in which the interaction among the individuals is on in the interactive time intervals and is off in the un-interactive ones. Besides, different from the existing works, where the dynamics of the system is linear or nonlinear, we consider the Lagrangian system in this paper with dynamical characteristics: high nonlinearity and coupling. In such case, a hierarchical intermittent-interactions-based control (HIIC) algorithm, including the distributed intermittent estimator and local control algorithm, is designed to achieve the above-mentioned control goal. Specifically, the distributed intermittent estimator is constructed to estimate the information of the leader for each individual. The local control algorithm is designed based on the derived estimators to address the BCT problem finally. Furthermore, the sufficient conditions for ensuring the stability of the closed-loop system are derived through systematic Lyapunov stability analysis. Finally, some numerical simulations on the networked manipulators are performed to prove the validity of the proposed HIIC algorithm.  相似文献   

13.
14.
In this paper, the reliable control design is considered for networked control systems (NCSs) against probabilistic actuator fault with different failure rates, measurements distortion, random network-induced delay and packet dropout. A new distribution-based fault model is proposed, which also contains the probability distribution information of the random delay and packet dropout. By using Lyapunov functional and new technique in dealing with time delay, stability and stabilization criteria are derived in terms of linear matrix inequalities. The provided numerical example and vertical takeoff and landing (VTOL) aircraft system illustrate that: firstly, using the distribution information of the delay, the maximum effective delay bound (MEDB) can be greatly improved, secondly, the proposed reliable controller can stabilize the NCSs with probabilistic actuator fault and measurements distortion, which may be unstable under the controller designed without considering the unreliable cases.  相似文献   

15.
This paper is concerned with the event-triggered H state estimation problem for a class of discrete-time complex networks subject to state saturations, quantization effects as well as randomly occurring distributed delays. A series of Bernoulli distributed random variables is utilized to model the random occurrence of distributed delays. For the energy-saving purpose, an event-triggered mechanism is proposed to decide whether the current quantized measurement should be transmitted to the estimator or not. For the state-saturated complex networks, our aim is to design event-triggered state estimators that guarantee both the exponential mean-square stability of and the H performance constraint on the error dynamics of the state estimation. Stochastic analysis is conducted, in combination with the Lyapunov functional approach, to derive sufficient conditions for the existence of the desired estimators whose gain matrices are obtained by solving a set of matrix inequalities. An illustrative example is exploited to show the usefulness of the estimator design algorithm proposed.  相似文献   

16.
In this paper, we deal with the cooperative output regulation problem of linear multi-agent systems on a directed network topology subject to both stochastic packet dropout and time-varying communication delay. On the basis of introducing a queuing mechanism, a distributed state feedback control algorithm is proposed. Then the continuous-time multi-agent systems with piece-wise constant control are converted into discrete-time systems. Under some standard assumptions, the necessary and sufficient conditions under which the tracking errors of followers approach to the origin asymptotically are proposed for different exosystems. Finally, the proposed results are verified via two examples.  相似文献   

17.
We propose a coding scheme for the stabilization of continuous linear scalar systems under a communication channel with finite data rate, lossy observations and network-induced delay. Owing to the network-induced delay, uncertain control input is introduced to the corresponding discrete time systems. Furthermore, since the system state is quantized to finite-bit signals and may be randomly lost in the communication, under the proposed coding scheme, the considered scalar system is described by a switched system of more than one dimension with arbitrary switchings. We derive the conditions for first moment stability of the systems, characterizing the relations on quantization cell boundaries, packet loss probabilities, and the network-induced delay. Further, we derive the condition for almost sure stability of the systems. A numerical method is proposed to search the infimum of the data rate for first moment stability under the given condition. It is shown that for the quantizer with the infimum of the data rate for first moment stability, although the quantization cells have different lengths, the matrices corresponding to these quantization cells have the same maximum eigenvalue.  相似文献   

18.
Unpredictable packet loss that occurs in the channel connecting a local sensor and a remote estimator will deteriorate the performance of state estimation. To relieve this detrimental impact, an online linear temporal coding scheme is studied in this paper. If the packet of the last step is lost, a linear combination of the current and the last measurements with proper weights is transmitted; otherwise, only the current data is sent. By virtue of the innovation sequence approach, a linear minimum mean-squared error estimation algorithm is designed. To optimize performance, a novel estimator is also proposed which provides a recursive expression of the error covariances. The proposed two algorithms are proved to be equivalent via a set of transformations. With the aid of some optimization techniques, a recursive algorithm is presented to obtain the optimal coding weight in terms of minimizing the average estimation error covariance.  相似文献   

19.
《Journal of The Franklin Institute》2022,359(18):11155-11185
Nowadays, cyber-physical systems (CPSs) have been widely used in various fields due to their powerful performance and low cost. The cyber attacks will cause security risks and even huge losses according to the universality and vulnerability of CPSs. As a typical network attack, deception attacks have the features of high concealment and strong destructiveness. Compared with the traditional deception attack models with a constant value, a deception attack with random characteristics is introduced in this paper, which is difficult to identify. In order to defend against such deception attacks and overcome energy constraints in CPSs, the secure state estimation and the event-triggered communication mechanism without feedback information are co-considered to reconcile accuracy of estimation and energy consumption. Firstly, an event-triggered augmented state estimator is proposed for secure state estimation and attack identification. Then, under the ideology of equivalence, the augmented state estimator is derived as a concise two-stage estimator with reduced order. The two-stage estimator can perform the secure state estimation and attack identification respectively. The estimators ensure the accuracy of attack identification well since not treating attack information as the trigger event. Afterward, the comparison of the computational complexity of these two algorithms is analyzed. Finally, an example of a target tracking system is supplied to prove the effectiveness and efficiency of the proposed algorithm.  相似文献   

20.
This paper presents a new stability analysis of networked control systems (NCSs) with network-induced delay and packet dropout. A novel augmented Lyapunov–Krasovskii functional (LKF) is constructed, which takes into account the feature of the sawtooth delay induced by sample-and-hold. Based on an improved version of Wirtinger's inequality and the convex combination method, a delay-dependent stability criterion is derived in terms of linear matrix inequalities (LMIs). The advantage of the proposed criterion lies in its simplicity and less conservativeness than some of the existing results. The new criterion is applied to the network-based state feedback control problems. Numerical examples are given to verify the effectiveness of the proposed criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号