首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two experiments (n = 10) were conducted to determine the effects of roller massager (RM) on ankle plantar flexor muscle recovery after exercise-induced muscle damage (EIMD). Experiment 1 examined both functional [i.e., ankle plantar flexion maximal isometric contraction and submaximal (30%) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and medial gastrocnemius pain pressure threshold] and morphological [cross-sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1, 24, 48, and 72 h after an EIMD stimulus. Experiment 2 examined medial gastrocnemius deoxyhaemoglobin concentration kinetics before and 48 h after EIMD. Participants performed both experiments twice: with (RM) and without (no-roller massager; NRM) the application of a RM (6 × 45 s; 20-s rest between sets). RM intervention did not alter the functional impairment after EIMD, as well as the medial gastrocnemius morphology and oxygenation kinetics (P > 0.05). Although, an acute increase of ipsilateral (RM = + 19%, NRM = ?5%, P = 0.032) and a strong tendency for contralateral (P = 0.095) medial gastrocnemius pain pressure threshold were observed. The present results suggest that a RM has no effect on plantar flexors performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness).  相似文献   

2.
Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8?±?6.8 years; 84.1?±?9.2?kg; 1.77?±?0.07?m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35?m?s?1±5% were measured before eccentric exercise (baseline) and, 24?h and 48?h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48?h (P?=?0.01; d?=?0.26), and peak knee extensor moment was reduced at 24?h (P?=?0.001; d?=?0.49) and 48?h (P?<?0.001; d?=?0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P?>?0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24?h and 48?h (P?<?0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.  相似文献   

3.
This study (1) compared the physiological responses and performance during a high-intensity interval training (HIIT) session incorporating externally regulated (ER) and self-selected (SS) recovery periods and (2) examined the psychophysiological cues underpinning SS recovery durations. Following an incremental maximal exercise test to determine maximal aerobic speed (MAS), 14 recreationally active males completed 2 HIIT sessions on a non-motorised treadmill. Participants performed 12?×?30?s running intervals at a target intensity of 105% MAS interspersed with 30?s (ER) or SS recovery periods. During SS, participants were instructed to provide themselves with sufficient recovery to complete all 12 efforts at the required intensity. A semi-structured interview was undertaken following the completion of SS. Mean recovery duration was longer during SS (51?±?15?s) compared to ER (30?±?0?s; p?d?=?1.46?±?0.46). Between-interval heart rate recovery was higher (SS: 19?±?9?b?min?1; ER: 8?±?5?b?min?1; p?d?=?1.43?±?0.43) and absolute time ≥90% maximal heart rate (HRmax) was lower (SS: 335?±?193?s; ER: 433?±?147?s; p?=?.075; d?=?0.52?±?0.39) during SS compared to ER. Relative time ≥105% MAS was greater during SS (90?±?6%) compared to ER (74?±?20%; p?d?=?0.87?±?0.40). Different sources of afferent information underpinned decision-making during SS. The extended durations of recovery during SS resulted in a reduced time ≥90% HRmax but enhanced time ≥105% MAS, compared with ER exercise. Differences in the afferent cue utilisation of participants likely explain the large levels of inter-individual variability observed.  相似文献   

4.
5.
The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Methods: Eight sedentary men (23.3?±?0.7?y) underwent two eccentric cycling sessions (EXT and FLEX) of 30?min each, at 60% of the maximum power output. Oxygen consumption (VO2), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1–4 days after cycling. Results: FLEX showed greater VO2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Conclusion: Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.  相似文献   

6.
Strenuous physical exercise of the limb muscles commonly results in damage, especially when that exercise is intense, prolonged and includes eccentric contractions. Many factors contribute to exercise-induced muscle injury and the mechanism is likely to differ with the type of exercise. Competitive sports players are highly susceptible to this type of injury. AM3 is an orally administered immunomodulator that reduces the synthesis of proinflammatory cytokines and normalizes defective cellular immune fractions. The ability of AM3 to prevent chronic muscle injury following strenuous exercise characterized by eccentric muscle contraction was evaluated in a double-blind and randomized pilot study. Fourteen professional male volleyball players from the First Division of the Spanish Volleyball League volunteered to take part. The participants were randomized to receive either placebo (n?=?7) or AM3 (n?=?7). The physical characteristics (mean±s) of the placebo group were as follows: age 25.7±2.1 years, body mass 87.2±4.1?kg, height 1.89±0.07?m, maximal oxygen uptake 65.3±4.2?ml?·?kg?1?·?min?1. Those of the AM3 group were as follows: age 26.1±1.9 years, body mass 85.8±6.1?kg, height 1.91±0.07?m, maximal oxygen uptake 64.6±4.5?ml?·?kg?1?·?min?1. All participants were evaluated for biochemical indices of muscle damage, including concentrations of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatine kinase (CK) and its MB fraction (CK-MB), myoglobin, lactate dehydrogenase, urea, creatinine and γ-glutamyltranspeptidase, both before and 30 days after treatment (over the peak of the competitive season). In the placebo group, competitive exercise (i.e. volleyball) was accompanied by significant increases in creatine kinase (494±51 to 560±53?IU?·?l?1, P?<?0.05) and myoglobin (76.8±2.9 to 83.9±3.1?μg?·?l?1, P?<?0.05); aspartate aminotransferase (30.8±3.0 to 31.1±2.9?IU?·?l?1) and lactate dehydrogenase (380±31 to 376±29?IU?·?l?1) were relatively unchanged after the 30 days maximum effort. AM3 not only inhibited these changes, it led to a decrease from baseline serum concentrations of creatine kinase (503±49 to 316±37?IU?·?l?1, P?<?0.05) and myoglobin (80.1±3.2 to 44.1±2.6?IU?·?l?1, P?<?0.05), as well as aspartate aminotransferase (31.1±3.3 to 26.1±2.7?IU?·?l?1, P?<?0.05) and lactate dehydrogenase (368±34 to 310±3?IU?·?l?1, P?<?0.05). The concentration of CK-MB was also significantly decreased from baseline with AM3 treatment (11.6±1.2 to 5.0±0.7?IU?·?l?1, P?<?0.05), but not with placebo (11.4±1.1 to 10.8±1.4?IU?·?l?1). In conclusion, the use of immunomodulators, such as AM3, by elite sportspersons during competition significantly reduces serum concentrations of proteins associated with muscle damage.  相似文献   

7.
The effects of training on FNDC5/irisin and its association with fitness and metabolic marker improvements induced by training have been poorly investigated in humans. Thus, the present study assessed the effects of combined training (CT) on FNDC5/irisin levels, metabolic markers and fitness adaptations in obese men. Middle-age obese men (age 49.13?±?5.75, body mass index (BMI) 30.86?±?1.63) were randomly distributed in the CT group (n?=?12) and control group (CG n?=?10). The CT consisted of strength followed by aerobic training, 3 times/week, for 24 weeks. Body composition, physical fitness, plasma FNDC5/irisin, biochemical markers and metabolic scores/index were evaluated. CT maintained FNDC5/irisin levels (µg/mL) (pre: 4.15?±?0.32, post: 4.21?±?0.32; p?=?.96) and improved body composition, metabolic and physical fitness markers. In the CG, decreased FNDC5/irisin (µg/mL) (pre: 4.36?±?0.23, post: 3.57?±?0.94; p?=?.01) and reduced strength (supine exercise/kg) (pre: 71?±?14.7, post: 60.1?±?14.05; p?<?.01) were observed, along with a trend to increase HOMA-IR (pre: 2.63?±?1.11, post: 3.14?±?1.27; p?=?.07) and other indicators of metabolic deterioration. An inverse correlation was found between the change (Δ%) in levels of FNDC5/irisin and Δ% glucose, Δ% total cholesterol, Δ% triglycerides and Δ% waist circumference, in addition to a positive relation with Δ% muscle strength. In conclusion, CT maintained FNDC5/irisin levels and provided metabolic and fitness benefits. The correlation between FNDC5/irisin changes and metabolic parameters, as well as the FNDC5/irisin reduction associated with fitness and metabolic worsening in the CG, suggests a relationship between FNDC5/irisin and a healthy metabolic status in humans.  相似文献   

8.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

9.
Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n?=?10) or placebo control group (PLA; n?=?9) and performed 60?min LC exercise (6.5?km?h–1) followed by a 2.4?km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13?±?7% and 16?±?8%, respectively, p?PImax increased +31% (p?TT (+18%, p?PImax at each time point was unchanged (13?±?11% and 17?±?9%, respectively, p?>?.05). In IMT only, heart rate and perceptual responses were reduced post-LC (p?p?相似文献   

10.
The purpose of this study was to examine the influence of a carbohydrate-rich meal on post-prandial metabolic responses and skeletal muscle glycogen concentration. After an overnight fast, eight male recreational/club endurance runners ingested a carbohydrate (CHO) meal (2.5 g CHO?·?kg?1 body mass) and biopsies were obtained from the vastus lateralis muscle before and 3 h after the meal. Ingestion of the meal resulted in a 10.6?±?2.5% (P?<?0.05) increase in muscle glycogen concentration (pre-meal vs post-meal: 314.0?±?33.9 vs 347.3?±?31.3 mmol?·?kg?1 dry weight). Three hours after ingestion, mean serum insulin concentrations had not returned to pre-feeding values (0 min vs 180 min: 45?±?4 vs 143?±?21 pmol?·?l?1). On a separate occasion, six similar individuals ingested the meal or fasted for a further 3 h during which time expired air samples were collected to estimate the amount of carbohydrate oxidized over the 3 h post-prandial period. It was estimated that about 20% of the carbohydrate consumed was converted into muscle glycogen, and about 12 % was oxidized. We conclude that a meal providing 2.5 g CHO?·?kg?1 body mass can increase muscle glycogen stores 3 h after ingestion. However, an estimated 67% of the carbohydrate ingested was unaccounted for and this may have been stored as liver glycogen and/or still be in the gastrointestinal tract.  相似文献   

11.
The aim of the study was to compare the effect of resistance training (RT) frequencies of five times (RT5), thrice- (RT3) or twice- (RT2) weekly in muscle strength and hypertrophy in young men. Were used a within-subjects design in which 20 participants had one leg randomly assigned to RT5 and the other to RT3 or to RT2. 1?RM and muscle cross-sectional area (CSA) were assessed at baseline, after four (W4) and eight (W8) RT weeks. RT5 resulted in greater total training volume (TTV) than RT3 and RT2 (P?=?.001). 1?RM increased similarly between protocols at W4 (RT5: 55?±?9?Kg, effect size (ES): 1.18; RT3: 51?±?11?Kg, ES: 0.80; RT2: 54?±?7?Kg, ES: 1.13; P?P?2, ES: 0.54; RT3: 22.0?±?4.6?cm2, ES: 0.19; RT2: ES: 0.25; 23.8?±?3.8?cm2; P?2; ES: 0.69; RT3: 23.6?±?4.2?cm2, ES: 0.58; RT2: 25.5?±?3.7?cm2; ES: 0.70; P?2; RT3: 21.2?±?4.0?cm2; RT2: 22.9?±?3.8?cm2). Performing RT5, RT3 and RT2 a week result in similar muscle strength increase and hypertrophy, despite higher TTV for RT5.  相似文献   

12.
Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized human skeletal muscle fibres acutely exposed to Actovegin in a low and in a high dose. We found that Actovegin, in the presence of complex I-linked substrates increased the oxidative phosphorylation (OXPHOS) capacity significantly in a concentration-dependent manner (19?±?3, 31?±?4 and 45?±?4?pmol/mg/s). Maximal OXPHOS capacity with complex I and II-linked substrate was increased when the fibres were exposed to the high dose of Actovegin (62?±?6 and 77?±?6?pmol/mg/s) (p?Vmax and Km were also increased in a concentration-dependent manner after Actovegin exposure (70?±?6, 79?±?6 and 88?±?7?pmol/mg/s; 13?±?2, 25?±?3 and 37?±?4?pmol/mg/s; 0.08?±?0.02, 0.21?±?0.03 and 0.36?±?0.03?mM, respectively) (p?相似文献   

13.
Abstract

Ten healthy males and ten healthy females aged 21.5 ± 3.2 years (mean ± s) participated in the study, which was designed to evaluate the effectiveness of sensory level-high volt pulsed electrical current (HVPC) on delayed-onset muscle soreness (DOMS). Arm discomfort, elbow extension range of motion and isometric elbow flexion strength were obtained as baseline measurements. Delayed-onset muscle soreness was induced in the participants' dominant or non-dominant arm using two sets of 20 maximal eccentric elbow flexion contractions. After the induction of DOMS, the participants were randomly divided into an experimental condition (HVPC) or a placebo condition. The experimental condition consisted of 20 min of HVPC immediately after the induction of DOMS, and 20 min every 24 h for three consecutive days thereafter. The participants in the placebo condition received an intervention similar in design; however, no electrical current was administered. Baseline measurements were reevaluated at 24, 48, 72 and 96 h after the induction of DOMS. Three weeks later, the participants returned and the protocol was repeated on the contralateral limb, using the opposite intervention (HVPC or placebo). Repeated-measures analysis of variance revealed a significant increase in overall arm discomfort, decrease in elbow extension and decrease in isometric strength for both conditions over time. No significant main effect of treatment, or time-by-treatment interaction, was found for the HVPC condition when compared with the placebo condition for any variable. Sensory-level HVPC, as utilized in our application, was ineffective in reducing the measured variables associated with DOMS.  相似文献   

14.
从功能内稳态(function-specific homeostasis,FSH)角度分析EIMD/DOMS过程影响运动成绩的正常发挥,而防治措施又大多无效这一现象,结果发现力竭运动所致的EIMD/DOMS,骨骼肌蛋白质代谢远离了蛋白质代谢内稳态(protein metabolite specific homeostasis,PmSH),EIMD/DOMS康复延迟,外源性有利因素干预可促进EIMD/DOMS康复;非力竭运动所致的EIMD/DOMS,蛋白质代谢处于PmSH,EIMD/DOMS正常康复,外源性因素对EIMD/DOMS无明显影响作用。  相似文献   

15.
This study examined whether avoiding or experiencing exercise-induced muscle damage (EIMD) influences strength gain after downhill walking training. Healthy young males performed treadmill downhill walking (gradient: ?28%, velocity: 5 km · h?1 and load: 10% of body mass) 1 session per week for four weeks using either a ramp-up protocol (n = 16), where exercise duration was gradually increased from 10 to 30, 50 and 70 min over four sessions, or a constant protocol (n = 14), where exercise duration was 40 min for all four sessions. Indirect markers of EIMD were measured throughout the training period. Maximal knee extension torque in eccentric (?1.05 rad·s?1), isometric and concentric (1.05 rad·s?1) conditions were measured at pre- and post-training. The ramp-up group showed no indications of EIMD throughout the training period (e.g., plasma creatine kinase (CK) activity: always <185 U · L?1) while EIMD was evident after the first session in the constant group (CK: peak 485 U · L?1). Both groups significantly increased maximal knee extension torque in all conditions with greater gains in eccentric (ramp-up: +19%, constant: +21%) than isometric (+16%, +15%) and concentric (+12%, +10%) strength without any significant group-difference. The current results suggest that EIMD can be avoided by the ramp-up protocol and is not a major determinant of training-induced strength gain.  相似文献   

16.
Ratings of perceived exertion (RPE: 0–10) during resistance training with varying programming demands were examined. Blood lactate (BLa) and muscle activation (using surface electromyography: EMG) were measured as potential mediators of RPE responses. Participants performed three sets of single arm (preferred side) bicep curls at 70% of 1 repetition maximum over 4 trials: Trial (A) 3 sets?×?8 repetitions?×?120?s recovery between sets; (B) 3 sets?×?8 repetitions?×?240?s recovery; (C) 3 sets?×?maximum number of repetitions (MNR)?×?120?s recovery; (D) 3 sets?×?MNR?×?240?s recovery. Overall body (RPE-O) and active muscle (RPE-AM) perceptual responses were assessed following each set in each trial. Biceps brachii and brachioradialis muscle EMG was measured during each set for each trial. RPE-O and RPE-AM were not different between Trial A (3.5?±?1 and 6?±?1, respectively) and Trial B (3.5?±?1 and 5.5?±?1, respectively) (p?p?相似文献   

17.
Abstract

It is a common requirement in tournament scenarios for athletes to compete multiple times in a relatively short time period, with insufficient recovery time not allowing full restoration of physical performance. This study aimed to develop a greater understanding of the physiological stress experienced by athletes in a tournament scenario, and how a commonly used recovery strategy, cold water immersion (CWI), might influence these markers. Twenty-one trained male games players (age 19?±?2; body mass 78.0?±?8.8?kg) were randomised into a CWI group (n?=?11) or a control group (n?=?10). To simulate a tournament, participants completed the Loughborough Intermittent Shuttle Test (LIST) on three occasions in five days. Recovery was assessed at specific time points using markers of sprint performance, muscle function, muscle soreness and biochemical markers of damage (creatine kinase, CK), inflammation (IL-6 and C-Reactive Protein) and oxidative stress (lipid hydroperoxides and activity of 6 lipid-soluble antioxidants). The simulated tournament was associated with perturbations in some, but not all, markers of physiological stress and recovery. Cold water immersion was associated with improved recovery of sprint speed 24?h after the final LIST (ES?=?0.83?±?0.59; p?=?.034) and attenuated the efflux of CK pre- and post-LIST 3 (p?<?.01). The tournament scenario resulted in an escalation of physiological stress that, in the main, cold water immersion was ineffective at managing. These data suggest that CWI is not harmful, and provides limited benefits in attenuating the deleterious effects experienced during tournament scenarios.  相似文献   

18.
Abstract

This study investigated the effects of upper-body repeated-sprint training in hypoxia vs. in normoxia on world-level male rugby union players’ repeated-sprint ability (RSA) during an international competition period. Thirty-six players belonging to an international rugby union male national team performed over a 2-week period four sessions of double poling repeated-sprints (consisting of 3 × eight 10-s sprints with 20-s passive recovery) either in normobaric hypoxia (RSH, simulated altitude 3000 m, n?=?18) or in normoxia (RSN, 300 m; n?=?18). At pre- and post-training intervention, RSA was evaluated using a double-poling repeated-sprint test (6 × 10-s maximal sprint with 20-s passive recovery) performed in normoxia. Significant interaction effects (P?<?0.05) between condition and time were found for RSA-related parameters. Compared to Pre-, peak power significantly improved at post- in RSH (423?±?52 vs. 465?±?69 W, P?=?0.002, η²=0.12) but not in RSN (395?±?65 vs. 397?±?57 W). Averaged mean power was also significantly enhanced from pre- to post-intervention in RSH (351?±?41 vs. 388?±?53 W, P?<?0.001, η²=0.15), while it remained unchanged in RSN (327?±?49 vs. 327?±?43 W). No significant change in sprint decrement (P?=?0.151, η²?=?0.02) was observed in RSH (?17?±?2% vs. ?16?±?3%) nor RSN (?17?±?2% vs. ?18?±?4%). This study showed that only four upper-body RSH sessions were beneficial in enhancing repeated power production in international rugby union players. Although the improvement from RSA to game behaviour remains unclear, this finding appears of practical relevance since only a short preparation window is available prior to international games.  相似文献   

19.
This study investigated whether commercially available compression garments (COMP) exerting a moderate level of pressure and/or neuromuscular electrical stimulation (NMES) accelerate recovery following a cross-country sprint skiing competition compared with a control group (CON) consisting of active recovery only. Twenty-one senior (12 males, 9 females) and 11 junior (6 males, 5 females) Swedish national team skiers performed an outdoor sprint skiing competition involving four sprints lasting ~3–4 min. Before the competition, skiers were matched by sex and skiing level (senior versus junior) and randomly assigned to COMP (n?=?11), NMES (n?=?11) or CON (n?=?10). Creatine kinase (CK), urea, countermovement jump (CMJ) height, and perceived muscle pain were measured before and 8, 20, 44 and 68?h after competition. Neither COMP nor NMES promoted the recovery of blood biomarkers, CMJ or perceived pain post-competition compared with CON (all P?>?.05). When grouping all 32 participants, urea and perceived muscle pain increased from baseline, peaking at 8?h (standardised mean difference (SMD), [95% confidence intervals (CIs)]): 2.8 [2.3, 3.2]) and 44?h (odds ratio [95% CI]: 3.3 [2.1, 5.1]) post-competition, respectively. Additionally, CMJ was lower than baseline 44 and 68?h post-competition in both males and females (P?相似文献   

20.
This study investigated the acute effects of Kinesio taping (KT) on muscular power, strength, endurance, and self-perceived fatigue level. This is a randomized, partial double-blind, crossover trial. Eighteen healthy adults (7 males [23.86?±?1.68 years] and 11 females [24.82?±?3.71 years]) were enrolled in this study. All subjects underwent three different trials which included no tap (NT), placebo tap (PT), and KT. Idividuals were assessed for peak and mean power, muscular strength and endurance, and self-perceived fatigue after each condition. The results revealed no significant differences in all variables (p?>?0.05) except muscular endurance (F?=?5.775, p?=?0.007). Muscular endurance in the NT (58.28?±?12.18?reps/min) condition was significantly higher than that in the KT (52.83?±?11.76?reps/min) condition. These results suggest that KT on rectus femoris and the patella of the lower limb does not improve muscular function and self-perceived fatigue level. KT is unlikely to enhance exercise performance capacity in healthy adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号