首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching science to teachers during a mentored internship in an elementary teacher professional development program. With our mentor, we examine critical incidents in the experience that supported new insights about teaching teachers and about ways in which beginning teacher educators need to develop their existing pedagogical content knowledge for teaching science to students in order to teach science effectively to teachers. We emphasize ways in which doctoral internships can support this learning and how our respective cultures shaped our interactions with and perceptions of teachers as learners.  相似文献   

2.
3.
In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help them to develop their PCK. Qualitative data gathered included: the syllabi, handouts, work submitted by student teachers, student teachers’ journal entries, my journal entries, and video recordings of my classroom teaching. Data were analysed using an inductive process to identify ways in which I attempted to enhance student teachers’ PCK. The contributions of this study are insights generated to help teacher educators think about how to support and develop student teachers’ PCK. Some of these contributions are enhancing teacher educators’ PCK for teaching science teachers, developing PCK for teaching science, and designing a science methods course in science teacher preparation programmes.  相似文献   

4.
This study examined Malaysian science teachers' pedagogical content knowledge (PCK) of selected physics concepts. The two components of PCK investigated were (i) knowledge of students' understanding, conceptions and misconceptions of topics, and (ii) knowledge of strategies and representations for teaching particular topics. The participants were 12 trainee teachers from various academic science backgrounds attending a one-year postgraduate teacher-training course. They were interviewed on selected basic concepts in physics that are found in the Malaysian Integrated Science curriculum for lower secondary level. The findings showed that trainee teachers' PCK for promoting conceptual understanding is limited. They lacked the ability to transform their understanding of basic concepts in physics required to teach lower secondary school science pupils. The trainees' level of content knowledge affected their awareness of pupils' likely misconceptions. Consequently, the trainees were unable to employ the appropriate teaching strategies required to explain the scientific ideas. This study provides some pedagogical implications for the training of science teachers.  相似文献   

5.
教师学科教学知识(PCK)的形成是STEAM教育的发展之基。STEAM教师PCK是教师面对具体的跨学科的内容主题时,所特有的将不同学科的知识和技术转化为学生易于理解的教学形式的整合性知识,具有知识范畴的跨学科性、知识来源的实践性和知识形成的融合性等特点。通过对已有PCK研究的梳理,结合STEAM教育的特征,STEAM教师PCK可分为跨学科内容知识、教学对象知识、教学情境知识和教学策略知识。在此基础上,STEAM教师PCK的建构逻辑:一是立足理论性学习为教师建构PCK打“地基”,促进公共性PCK向个体性PCK转化;二是基于经验性学习为教师建构PCK竖“框架”,推动内隐性PCK向实践性PCK转化;三是通过实践性学习为教师建构PCK添“砖瓦”,实现陈述性PCK向程序性PCK转化。  相似文献   

6.
ABSTRACT

This paper concludes the Special Issue (SI) ‘Probing the Amalgam: the relationship between science teachers’ content, pedagogical and pedagogical content knowledge’. We review the five papers (Sorge et al; Gess-Newsome et al; Kind; Pitjeng-Mosabala and Rollnick; and Liepertz and Bronowski) by discussing evidence these present regarding the relationships between content knowledge (CK), pedagogical knowledge (PK) and pedagogical content knowledge (PCK); the development of CK, PK and PCK in novice and experienced secondary science teachers and how CK, PK and/or PCK impact students’ learning. In conclusion, we draw these findings together in offering proposals for future research via reconsideration of Shulman’s amalgam. This includes post-hoc examination of a PCK model known as ‘the Consensus Model’ (Gess-Newsome, [2015]. A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Re-examining Pedagogical Content Knowledge in Science Education (pp. 28–42). New York, NY: Routledge; Neumann, Kind, & Harms [2018]. Probing the amalgam: The relationship between science teachers’ content, pedagogical and pedagogical content knowledge. International Journal of Science Education, 1–15) and presentation of a novel PCK structure based on evidence from the SI studies.  相似文献   

7.
As teachers' knowledge determines to a large extent how they respond to educational innovation, it is necessary for innovators to take this knowledge into account when implementing educational changes. This study aimed at identifying patterns in the content and the structure of science teachers' knowledge, at a point in time when they still had little experience in teaching a new subject, that is, Public Understanding of Science. We investigated three domains of teacher knowledge: Teachers' pedagogical content knowledge (PCK), subject-matter knowledge, and general pedagogical knowledge. A semi-structured interview and a questionnaire were used. From the analysis of the data, two types of teacher knowledge emerged. One of the types was more integrated and more extended in terms of PCK. Teachers who represented this type of knowledge had developed PCK that connected the various programme domains of the new science subject. In both types, PCK was found to be consistent with general pedagogical knowledge. In both types, however, subject-matter knowledge was similar, and not directly related to the other knowledge domains. Implications for the implementation of the new subject are discussed.  相似文献   

8.
The purpose of this study is to provide insight into short-term professionalization of teachers regarding teaching socioscientific issues (SSI). The study aimed to capture the development of science teachers' pedagogical content knowledge (PCK) for SSI teaching by enacting specially designed SSI curriculum materials. The study also explores indicators of stronger and weaker development of PCK for SSI teaching. Thirty teachers from four countries (Cyprus, Israel, Norway, and Spain) used one module (30–60 min lesson) of SSI materials. The data were collected through: (a) lesson preparation form (PCK-before), (b) lesson reflection form (PCK-after), (c) lesson observation table (PCK-in-action). The data analysis was based on the PCK model of Magnusson, Krajcik, and Borko (1999). Strong development of PCK for SSI teaching includes “Strong interconnections between the PCK components,” “Understanding of students' difficulties in SSI learning,” “Suggesting appropriate instructional strategies,” and “Focusing equally on science content and SSI skills.” Our findings point to the importance of these aspects of PCK development for SSI teaching. We argue that when professional development programs and curriculum materials focus on developing these aspects, they will contribute to strong PCK development for SSI teaching. The findings regarding the development in the components of PCK for SSI provide compelling evidence that science teachers can develop aspects of their PCK for SSI with the use of a single module. Most of the teachers developed their knowledge about students' understanding of science and instructional strategies. The recognition of student difficulties made the teacher consider specific teaching strategies which are in line with the learning objectives. There is an evident link between the development of PCK in instructional strategies and students' understanding of science for SSI teaching.  相似文献   

9.
Recently, theorists have raised concerns that pedagogical content knowledge (PCK) has become “a stale metaphor” that disregards diversity and equity, offers little to help teachers address students’ misconceptions, and portrays knowledge as “in the head” versus in practice. We refute these notions using grounded theory to specify ways one 7th-grade science teacher enacted PCK to advance student learning. With the definition of PCK as knowledge at the intersection of content and teaching, we utilised a framework for science PCK to explore instructional decision-making. Interviews conducted over three years revealed specific ways the teacher enacted PCK by designing and delivering instruction built on each of the seven conceptual science PCK components. The teacher enacted PCK to plan and deliver instruction that was responsive, adaptive, and considerate of changing needs of students and the changing classroom landscape. She infused PCK into instructional decision-making, instructional interactions, and mentoring of a student teacher, modelling the translation of educational theory into practice and habits of mind necessary for expert teaching. This enactment actively refutes Settlage’s critiques, and depicts PCK as a vibrant and effective stance for teaching that enhances learning.  相似文献   

10.
A number of science education policy documents recommend that students develop an understanding of the enterprise of science and the nature of science (NOS). Despite this emphasis, there is still a gap between policy and practice. Teacher professional literature provides one potential venue for bridging this gap, by providing “activities that work” (Appleton in elementary science teacher education: International perspectives on contemporary issues and practice. Lawrence Erlbaum Associates, Mahwah, NJ, 2006) that can scaffold teachers’ developing pedagogical content knowledge (PCK) for teaching NOS. We analyzed articles published in the NSTA journal The Science Teacher (1995–2010) in terms of the degree to which they provide appropriate model activities and specific information that can support the development of teachers’ PCK for teaching NOS. Our analysis revealed a diversity of NOS aspects addressed by the authors and a wide range of variation in the percent of articles focused on each aspect. Additionally, we found that few articles provided robust information related to all the component knowledge bases of PCK for NOS. In particular, within the extant practitioner literature, there are few models for teaching the aspects of NOS, such as the function and nature of scientific theory. Furthermore, though articles provided information relevant to informing teachers’ knowledge of instructional strategies for NOS, relevant information to inform teachers’ knowledge of assessment in this regard was lacking. We provide recommendations for ways in which the practitioner literature may support teachers’ teaching of NOS through more robust attention to the types of knowledge research indicates are needed in order to teaching NOS effectively.  相似文献   

11.
12.
In this study, five elementary teachers and a university researcher developed and implemented problem‐based learning (PBL) experiences in the context of science teaching and learning. Collaborative inquiry was adopted as a methodology, while a variety of qualitative methods were used to examine the engagement and development of teachers’ pedagogical content knowledge (PCK). A PCK model is used as a framework to examine teachers’ professional knowledge growth in areas such as orientations to teaching science, knowledge of science curriculum, knowledge of students’ understanding of science, knowledge of assessment, and knowledge of instructional strategies. Implications for how teachers may be supported when adopting instructional innovations are discussed.  相似文献   

13.
论化学教师的PCK结构及其建构   总被引:1,自引:0,他引:1  
教师专业发展的核心问题就是发展他们的PCK。化学教师的PCK主要包括基于化学科学理解的化学学科知识、关于学生理解化学的知识、关于化学课程的知识和化学特定课题的教学策略及表征的知识。教师的PCK是在实践中建构和发展的。PCK的发展是一个非线性的、螺旋发展的动态的过程。化学教师PCK建构的基本策略是:形成促进PCK发展的教学思维方式,提升对化学科学的理解水平,关注学生对于化学的理解,发展化学课程知识,提高整合转化能力,多渠道丰富PCK资源库。  相似文献   

14.
The purpose of this case study is to delve into the complexities of how preservice science teachers’ science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the form of content representation, responses to an open-ended instrument, and semi-structured interviews. Preservice teachers’ orientation and PCK were analyzed deductively. Constant comparison analysis of how their orientation interacted with other PCK components revealed three major themes: (1) one’s purpose for science teaching determines the PCK component(s) with which it interacts, (2) a teacher’s beliefs about the nature of science do not directly interact with his/her PCK, unless those beliefs relate directly to the purposes of teaching science, and (3) beliefs about science teaching and learning mostly interact with knowledge of instructional strategies. Implications for science teacher education and research are discussed.  相似文献   

15.
ABSTRACT

This Special Issue aims to present evidence about the relationships between content knowledge (CK), pedagogical knowledge (PK) and pedagogical content knowledge (PCK); the development of these types of knowledge in novice and experienced secondary science teachers; and how CK, PK and/or PCK impact students’ learning. Since Shulman’s introduction of PCK as the feature that distinguishes the teacher from the content expert, researchers have attempted to understand, delineate, assess and/or develop the construct in pre- and in-service teachers. Accordingly, empirical findings are presented that permit further discussion. Outcomes permit post-hoc examination of a recent, collectively described, ‘consensus’ model of PCK, identifying strengths and potential issues. As we will illustrate, the relationship between CK, PK and PCK is central to this; that is, probing the hypothesis of pedagogical content knowledge as an ‘amalgam’ of content and pedagogical knowledge.  相似文献   

16.
The new Advanced Placement (AP) Computer Science (CS) Principles course increases the need for quality CS teachers and thus the need for professional development (PD). This article presents the results of a 2-year study investigating how teachers teaching the AP CS Principles course for the first time used online PD material. Our results showed that the teaching and computing background of teachers had a significant impact on the teachers' need for and use of online PD material. More specifically, novice CS teachers needed and used PD for developing their pedagogical content knowledge (PCK). Non-CS teachers needed and used PD materials emphasizing content knowledge. Experienced CS teachers believed they had little need for PD even though they were teaching a new course. Our study makes three recommendations for designing effective online PD for CS teachers: match PD to teachers' background, align PD with the course curriculum, and use effective motivational design to enhance teacher engagement. (Keywords: computer science education, online professional development, K–12, AP computer science principles course)  相似文献   

17.
PCK是学科教学知识的简称,是教师知识结构中的核心知识,对于教师的成长与发展具有重要的作用。通过对PCK内涵的探索,揭示其主要包含的教育学知识、学科知识和情境知识三个大范围的知识领域,并试图将代表教师的全部知识嵌入一个大环境之中,在此基础上建构教师发展的"倒金字塔"模式,分析合格型、熟练型、革新型三个阶段教师的发展过程,以促进教师的PCK发展。  相似文献   

18.
ABSTRACT

The structure and definition of professional knowledge is a continuing focus of science education research. In 2012, a pedagogical content knowledge (PCK) summit was held and it suggested a model of professional knowledge and skill including PCK, which was later often called the Consensus Model (Gess-Newsome, 2015. A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Teaching and learning in science series. Re-examining pedagogical content knowledge in science education (1st ed., pp. 28–42). New York, NY: Routledge). The Consensus Model proposes a potential powerful framework for the relations among teachers’ different professional knowledge bases, but to date it has neither been investigated empirically nor systematically. In this study, we investigated the relationships suggested by the Consensus Model among different aspects of teachers’ knowledge and skill. A sample of 35 physics teachers and their classes participated in the investigation; both teachers and their students in these classes took paper-and-pencil tests. Furthermore, a lesson taught by each of the teachers was videotaped and analysed. The video analysis focused on the interconnectedness of the content structure of the lesson as representation of the in-class actions of the teachers. The interconnectedness is understood as a direct result of the application of professional knowledge of the teachers to their teaching. The teachers’ knowledge showed no significant influence on the interconnectedness of the lesson content structure. However, the results confirmed the influence of interconnectedness and certain aspects of professional knowledge on students’ outcomes. Therefore, interconnectedness of content structure could be verified as one indicator of teachers’ instructional quality.  相似文献   

19.
Young children are able to benefit from early science teaching but many preschool teachers have not had opportunities to deepen their own understanding of science or to develop their pedagogical content knowledge (PCK) in relation to specific science topics and concepts. This study presents the results of efficacy research on Foundations of Science Literacy (FSL), a comprehensive professional development program designed to support teachers’ knowledge of early childhood science; their PCK around 2 physical science topics (water, and balls and ramps); and their abilities to plan, facilitate, and assess young children’s learning during inquiry-based science explorations. Research Findings: In a randomized trial with 142 preschool teachers and 1,004 4-year-old children, FSL teachers demonstrated significantly higher quality science teaching in general and greater PCK in the 2 physical science topics than did teachers in comparison classrooms. Furthermore, children in FSL classrooms performed significantly better than children in comparison classrooms on tasks involving floating and sinking, and an instrumental variable analysis suggests that the quality of classroom science instruction mediated the relationship between teacher participation in FSL and student outcomes. Practice or Policy: Findings support the use of comprehensive early science professional development programs designed to bolster teacher knowledge and PCK.  相似文献   

20.
Researchers have shown a growing interest in science teachers’ professional knowledge in recent decades. The article focuses on how chemistry teachers impart chemical bonding, one of the most important topics covered in upper secondary school chemistry courses. Chemical bonding is primarily taught using models, which are key for understanding science. However, many studies have determined that the use of models in science education can contribute to students’ difficulties understanding the topic, and that students generally find chemical bonding a challenging topic. The aim of this study is to investigate teachers’ knowledge of teaching chemical bonding. The study focuses on three essential components of pedagogical content knowledge (PCK): (1) the students’ understanding, (2) representations, and (3) instructional strategies. We analyzed lesson plans about chemical bonding generated by 10 chemistry teachers with whom we also conducted semi-structured interviews about their teaching. Our results revealed that the teachers were generally unaware of how the representations of models they used affected student comprehension. The teachers had trouble specifying students’ difficulties in understanding. Moreover, most of the instructional strategies described were generic and insufficient for promoting student understanding. Additionally, the teachers’ rationale for choosing a specific representation or activity was seldom directed at addressing students’ understanding. Our results indicate that both PCK components require improvement, and suggest that the two components should be connected. Implications for the professional development of pre-service and in-service teachers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号