首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
正线性规划进入高中教材已经有10多年的历史.其中在线性约束条件下,求形如"z=ax+by(a,b∈R)"的目标函数的最值问题,是线性规划问题中的基本题型.解这类问题,其常规解法是利用线性约束条件作出可行域,然后利用"截距法"求出目标函数的最优解.这种方法尽管通用,但操作起来比较麻烦,既要画直线,又要作可行域,平移直线,观察  相似文献   

2.
<正>目前,简单线性规划已成为高中数学不等式的一个重要模块,线性规划所体现的数学方法也成了解决高中数学问题的重要途径.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素,问题的解决途径主要依据三要素进行代数问题几何化和几何问题代数化.本文就如何在其他高中数学问题中应用线性规划举例说明.  相似文献   

3.
求线性目标函数在线性约束条件下的最大(小)值问题,统称为线性规划问题.使目标函数取得最大值或最小值的解叫最优解.求最优解的具体步骤是:(1)依题意,设出变量,建立目标函数;(2)列出线性约束条件;(3)作出可行域(图形要准确,否则答案会出错);(4)借助可行域确定函数的最优解,  相似文献   

4.
线性规划是研究线性目标函数在线性约束条件下取最大值或最小值的问题 ,简单线性规划则是新课程标准下高中教材的必学内容 ,主要介绍两个变量的线性规划问题 ,其最优解可通过图解法求出 .这里先通过一个例子来了解简单线性规划图解法的基本思想方法 ,从而发现理论方法与实际操作的偏差 ,进而给简单线性规划图解法添加几点补注供大家参考 .例 1 求 z =5 x + 6y的最大值 ;其中 x,y满足约束条件x + y≤ 484x + 5 y≤ 2 0 03 x + 10 y≤ 3 0 0x≥ 0 ,y≥ 0解 :作出可行域如图 1,作直线 l:5 x + 6y= 0 ,把直线 l进行平移可知 ,当直线 l过点 A时…  相似文献   

5.
线性规划问题是指在线性约束条件下求线性目标函数最值的问题.线性约束条件指变量x,y的约束条件,其中约束条件都是关于x,y的一次不等式;线性目标函数指z=f(x,y)  相似文献   

6.
高级中学教材(人教社实验修订本)中,规定线性规划问题的约束条件为线性的,即为二元一次方程或二元一次不等式(组);目标函数也是线性的,即形如f(x,y)=ax+by(a,b∈  相似文献   

7.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

8.
现行高中数学教材(试验修订本必修)新增加了《简单线性规划》一节,讨论了两个变量的线性规划问题.这一节的学习有助于培养学生科学、严谨的学习品质,提高学生分析和解决实际问题的能力,因为它在体现数学的工具性、应用性的同时,也渗透了化归、数形结合的数学思想.因此,学好本节的内容显得尤为重要.下面笔者就如何用图解法求目标函数的最大、最小值问题谈些自己的认识.在线性约束下,求目标函数Z=ax+by的最值,就是在可行域中找到最优解(X,Y).如何找最优解呢?可先做直线L:ax+by=0,再做直线L0:ax+by=t(t∈R).因为L0∥L,所以当t在可行域内取…  相似文献   

9.
线性规划是高中试验教材新增内容之一,在近年的高考中常以选择题、填空题的形式出现.解这类问题,通常都要先利用线性约束条件作出可行域,然后根据几何意义找到目标函数的最优解,但这种方法比较麻烦,既要画线,又要找点,比较费时.如果我们从目标函数中解出x或y,并将其代入约束条件,则可利用不等式的性质以及解不等式的方法,使问题迅速获解.下面,以2009年高考试题为例,予以说明.  相似文献   

10.
在高考中线性规划题型的考查往往是以与其他知识相交汇的方式出现的,比如与函数、方程、不等式、数列等知识相交汇.有时目标函数以非线性目标函数的方式出现,以此考查学生对知识的识别和驾驭能力.本文对其中几个热点问题进行探讨.1线性规划与均值不等式的交汇例1设x,y满足约束条件3x-y-6[0x-y+2\0x\0,y\0,若目标函数z=ax+by(a>0,b>0)的最大值为12.则2a+3b的最小值为().  相似文献   

11.
<正>线性规划是指在线性约束条件下求线性目标函数的最值问题.解决问题的基本思想是在约束条件所对应的可行域内根据目标函数的几何意义找到目标函数最优解.对于一类满足线性约束条件,但目标函数是非线性  相似文献   

12.
在简单线性规划中,有2个问题是解题的关键.1)需要快速准确判断二元一次不等式到底表示直线的哪一侧区域,从而画出可行域;2)需要判断线性目标函数(可以看成是一组平行直线系)向哪个方向(向上或向下)移动时,函数值变大或者是变小.以上2点可以说是解决线性规划问题时的重点也是难点,其实这些看似疑难的问题都和y的系数有紧密联系,只要我们掌握了这一性质,一切线性规划问题将迎刃而解.1利用y的系数确定二元一次不等式表示的平面区域关于如何正确判断二元一次不等式所表示的平面区域,教材中是这样给出的:一般的二元一次不等式Ax By C>0在平面直…  相似文献   

13.
线性规划与非线性规划的区别是:如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解存在,则可能在其可行域的任意一点达到.并且若目标函数的可行域为R,则有以下正确结论:  相似文献   

14.
沈红正 《中学教研》2004,(12):41-42
全日制高级中学教科书(试验修订本·必修)第二册(上)第7.4节介绍了简单线性规划有关问题,并通过例题讲解了图解法求最优解的问题.其中例4是一个最优整数解的问题,为了求目标函数z=x y的最优整数解,书中指出:在一组平行直线x y=t中(t为参数),经过可行域内的点且和原点距离最近的直线,此直线经过直线x 3y=27和直线2x  相似文献   

15.
含参数的线性规划问题通常有两种:即线性约束条件中含有参数与目标函数中含有参数两问题.解决的策略也有二:一是先确定可行域上的边界点或者边界线,进而确定线性约束条件中所含有的参数值;二是利用数形结合思想,比较目标函数与边界有关直线的倾斜程度等,从而求解问题.1线性约束条件中含有参数问题,可以根据条件先确定可行域上的边界点或者边界线,进而确定线性约束条件中所含有的参然值,然后画出可行域,把问题转化为一般形式的线性规划问题.  相似文献   

16.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

17.
<正>线性规划基本模式是已知两个变量x,y的线性约束条件,求z=f(x,y)的范围.但是,常会遇到一些与线性规划似乎不相关的求最值(范围)的问题,其实,只要作深入分析,不难发现均能化归为线性规划问题去求解.本文列举八类这样的交汇问题进行剖析,与读者共赏.一、线性规划与函数交汇例1设二元一次不等式组  相似文献   

18.
人教版高中数学第二册(上)中增加了一些简单的线性规划内容。所谓线性,指的是关于未知量的一次式,而线性规划是指求线陛目标函数在线陛约束条件下的最大值与最小值问题。线性规划的解题思路蕴含着数形结合的思想,其具体步骤是:先根据线性约束条件画出可行域,求出结点坐标,然后寻找最优解,最后得出目标函数的最值。  相似文献   

19.
在线性约束条件下,对于形如“z=ax+by(n,b∈R)”的目标函数的最值问题,常规求解思路是研究相应直线系的纵截距.当a,b是给定常数时,利用数形结合思想,学生一般都能正确求解;但是,当a,b中有一个是未知参数,需要对其进行分类讨论时,学生往往会顾此失彼,造成错解.实际上,结合可行域不难发现,目标函数的最值一般都是在可行域的顶点或边界取得.针对此规律,对于截距型的线性规划问题,可以采用一种全新的巧妙解法——“关键点”法进行求解.  相似文献   

20.
题 已知a、b、c ,x、y、z是实数 ,a2 +b2 +c2 =1 ,x2 +y2 +z2 =9,求 ax +by +cz的最大值。1 错解解 由均值不等式可得ax≤ a2 +x22 ,by≤ b2 +y22 ,cz≤c2 +z22 ,各式相加得 :ax +by +cz≤ a2 +x2 +b2 +y2 +c2 +z22=a2 +b2 +c2 +x2 +y2 +z22=1 +92=5 ,即 ax +by +cz≤ 5 ( )故 ax +by +cz的最大值为 5。错因 在用均值不等式求最值时忽略了等号成立的条件 ,因为要使 ( )等号成立 ,当且仅当a =x ,b =y ,c=z ,这与已知条件矛盾。所以ax +by +cz <5 ,即ax +by +cz的最大值不可能为 5。2 通解分析 该题的问题是由于a2 +b2 +c2 ≠x2 +y…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号