首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a long‐term research study to enhance science learning, this paper reports on an exploratory study aimed at identifying initial beliefs and practices of a group of teachers and students (Years 4–6) in Australia when the students engaged with multiple representations of the same science concepts. There is growing recognition in science education research that students need to understand and link different representational modes, such as graphic and verbal modes, in learning to think and act scientifically. This exploratory study used a multi‐site case‐study approach employing qualitative and quantitative methods. The findings indicated that while teachers used various modes to engage students and assess learning, they were not systematic in their focus on student integration and translation across modes. The study found that various factors affected students’ understanding of different modes, and that students who recognised relationships between modes demonstrated better conceptual understandings than students who lacked this knowledge.  相似文献   

2.
There has been extensive research on children’s understanding of evaporation, but representational issues entailed in this understanding have not been investigated in depth. This study explored three students’ engagement with science concepts relating to evaporation through various representational modes, such as diagrams, verbal accounts, gestures, and captioned drawings. This engagement entailed students (a) clarifying their thinking through exploring representational resources; (b) developing understanding of what these representations signify; and (c) learning how to construct representational aspects of scientific explanation. The study involved a sequence of classroom lessons on evaporation and structured interviews with nine children, and found that a focus on representational challenges provided fresh insights into the conceptual task involved in learning science. The findings suggest that teacher‐mediated negotiation of representational issues as students construct different modal accounts can support enriched learning by enabling both (a) richer conceptual understanding by students; and (b) enhanced teacher insights into students’ thinking.  相似文献   

3.
The present article discusses the design and impact of computer‐based visualization tools for supporting student learning and representational competence in science. Specifically, learning outcomes and student representation use are compared between eight secondary classrooms utilizing The Connected Chemistry Curriculum and eight secondary chemistry using lecture‐based methods. Results from the quasi‐experimental intervention indicate that the curriculum and accompanying visualization tool yield only small to modest gains in student achievement on summative assessments. Analysis of student representation use on pre‐ and post‐assessments, however, indicate the students in Connected Chemistry classrooms are significantly more likely to use submicroscopic representations of chemical systems that are consistent with teacher and expert representation use. The affordances of visualization tools in inquiry activities to improve students' representational competence and conceptual understanding of content in the science classroom are discussed. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 1137–1158, 2011  相似文献   

4.
5.
This study draws on recent research on the central role of representation in learning. While there has been considerable research on students’ understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students’ engagement with evaporation phenomena through various representational modes. The study indicates how a focus on representation can provide fresh insights into the conceptual task involved in learning science through an investigation of students’ responses to a structured classroom sequence and subsequent interviews over a year. A case study of one child’s learning demonstrates the way conceptual advances are integrally connected with the development of representational modes. The findings suggest that teacher-mediated negotiation of representational issues as students construct different modal accounts can support enriched learning by enabling both (a) richer conceptual understanding by students, and (b) enhanced teacher insights into students’ thinking.  相似文献   

6.
Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative‐based representation rather than learners’ cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children’s learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re‐interpreted in terms of the development of students’ representational resources.  相似文献   

7.
Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science (NOS)—a process in which science textbooks play a significant role. This paper reports on a case study of the development of representations of the NOS in a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of NOS; squared these with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing. As a result, the team developed and incorporated, in the textbook, representations of NOS they believed were the most pedagogically suitable. Analysis of the data in this study indicates that a number of factors significantly influenced the development of representations of NOS, including representational accuracy (the degree to which representations of NOS conformed to informed views of the NOS), representational consistency (the degree to which representations of NOS in different parts of the book conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level appropriateness of the NOS representations), representational alignment (the degree to which NOS representations aligned with mandated curriculum), representational marketability (the degree to which NOS representations would affect sales of the textbook), and ‘Workplace Resources’ factors including availability of time, relevant expertise, and opportunities for professional development.  相似文献   

8.
Existing research on students’ conceptions contain competing philosophical positions concerning the nature of students’ ideas—whether those ideas are coherent, systematic and theory-like, or fragmented and incoherent. Existing research has also focused primarily on studies of individual conceptions rather than investigating multiple, related conceptions. Nevertheless, there is wide agreement among researchers and teachers alike that the ideas students bring to a learning situation are fertile ground for investigation, and that students’ ideas should be taken into consideration when planning science instruction. The purpose of this study was to examine the representational, conceptual framework, and contextual consistency aspects of two students’ ideas across concepts of evaporation, condensation, and boiling. Knowing the consistency students express for each specific concept, and how well they integrate these related concepts, would offer insights that could potentially impact student learning. We present two case studies here that highlight the degree of consistency expressed by two students across different representations for each target concept and in instances where these conceptions are related to one another. Findings from this study highlight the need for attention to the consistency of students’ ideas across multiple, related concepts. Implications from this study support our recommendation for metaconceptual teaching strategies that would help students examine different representations for the same concept and also to examine the consistency of their ideas across multiple conceptions.  相似文献   

9.
Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why representational construction supports learning in science. The first or semiotic perspective focuses on student use of particular features of symbolic and material tools to make meanings in science. The second or epistemic perspective focuses on how this representational construction relates to the broader picture of knowledge-building practices of inquiry in this disciplinary field, and the third or epistemological perspective focuses on how and what students can know through engaging in the challenge of representing causal accounts through these semiotic tools. We argue that each perspective entails productive constraints on students’ meaning-making as they construct and interpret their own representations. Our framework seeks to take into account the interplay of diverse cultural and cognitive resources students use in these meaning-making processes. We outline the basis for this framework before illustrating its explanatory value through a sequence of lessons on the topic of evaporation.  相似文献   

10.

Constructing explanations of scientific concepts is one of the most frequent strategies used in the science classroom and is a high-leverage teaching practice. This study analysed the explanations provided by student teachers in STEM areas from a socio-materiality perspective focused on verbal and nonverbal language and representations. The study was conducted in a hybrid research format by scholars and a preservice teacher. First, the study compared the representational elements used by 86 student teachers to construct explanations about various concepts in a roleplay setting. Next, a positioning analysis was done by a preservice teacher, to a selection of five of these explanations focused on the concept of “force”. The positioning analysis highlighted the embedded voices in the construction of explanations, with a focus on the intersection between science and language. The results showed that the student teachers created explanations as static artefacts, mainly using examples, graphs and images to clarify the concepts. The voices of learners and scientists were mostly absent from the explanations, which led to the presentation of explanations in STEM areas as finished and unquestionable artefacts, with references neither to nature nor to the history of science. We reflect on the meanings attributed to learning to be a practitioner in the context of interconnecting science and language through explanations, as a process of meaning (re)production within the classroom. Implications for teacher education are discussed in order to enhance student teachers’ awareness about constructing knowledge by enacting explanations in the science classroom.

  相似文献   

11.
Language use in student laboratory groups makes apparent students' conceptions in science, their interpretation of the activity or task, and the negotiation of the roles of the members. This article reports on a methodological approach to analyze student discourse systematically. Four Grade 12 lab groups working on microcomputer-based laboratories (MBL) are the focus of the study. The MBL experiences were used to help students link oscillatory motion to graphical representations. Study of student discourse reveals the role the computer plays in the group context and the ways that this context is shaped by the computer. Developing a better understanding of the role of the computer in student conversations suggests ways to fruitfully construct contexts for learning physics. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Dealing with representations is a crucial skill for students and such representational competence is essential for learning science. This study analysed the relationship between representational competence and content knowledge, student perceptions of teaching practices concerning the use of different representations, and their impact on students' outcome over a teaching unit. Participants were 931 students in 51 secondary school classes. Representational competence and content knowledge were interactively related. Representational aspects were only moderately included in teaching and students did not develop rich representational competence although content knowledge increased significantly. Multilevel regression showed that student perceptions of interpreting and constructing visual-graphical representations and active social construction of knowledge predicted students' outcome at class level, whereas the individually perceived amount of terms and use of symbolic representations influenced the students' achievement at individual level. Methodological and practical implications of these findings are discussed in relation to the development of representational competence in classrooms.  相似文献   

13.
14.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   

15.
This paper reports on an empirical study which shows that qualitatively different approaches to teaching are associated with qualitatively different approaches to learning. More specifically, the results indicate that in the classes where teachers describe their approach to teaching as having a focus on what they do and on transmitting knowledge, students are more likely to report that they adopt a surface approach to the learning of that subject. Conversely, but less strongly, in the classes where students report adopting significantly deeper approaches to learning, teaching staff report adopting approaches to teaching that are more oriented towards students and to changing the students conceptions. The study made use of a teaching approach inventory derived from interviews with academic staff, and a modified approach to learning questionnaire. These conclusions are derived from a factor and cluster analysis of 48 classes (involving 46 science teachers and 3956 science students) in Australian universities. The results complete a chain of relations from teacher thinking to the outcomes of student learning. Previous studies have shown relations between teachers' conceptions of teaching and learning and their approaches to teaching. Numerous studies have shown correlations between students' deeper approaches to learning and higher quality learning outcomes. The results reported here link these two sets of studies. They also highlight the importance, in attempts to improve the quality of student learning, of discouraging teacher-focused transmission teaching and encouraging higher quality, conceptual change/student-focused approaches to teaching.  相似文献   

16.
Supporting student learning can be difficult, especially within open-ended or loosely structured activities, often seen as valuable for promoting student autonomy in many curriculum areas and contexts. This paper reports an investigation into the experiences of three teachers who implemented design and technology education ideas in their primary school classrooms for the first time. The teachers did not capitalise upon many of the opportunities for scaffolding their students’ learning within the open-ended activities they implemented. Limitations of the teachers’ conceptual and procedural knowledge of design and technology were elements that influenced their early experiences. The study has implications for professional developers planning programs in newly introduced areas of the curriculum to support teachers in supporting learning within open-ended and loosely structured problem solving activities.  相似文献   

17.
There is growing research interest in the challenges and opportunities learners face in representing scientific understandings, processes and reasoning. These challenges include integrating verbal, visual and mathematical modes in science discourse to make strong conceptual links between representations and classroom experiences. Our paper reports on a project that aimed to identify practical and theoretical issues entailed in a representation-intensive approach to guiding students’ conceptual learning in science. We focus here on a teacher developing students’ understanding of the formation of ions and molecules. We argue that the representations produced by students in this process met the criteria for representational competence proposed by diSessa (Cognition and Instruction, 22, 293–331, 2004) and Kozma & Russell (2005). The students understood that an effective representation needed to show relevant information, focus on pertinent points, be self-sufficient in its claims about the topic and provide coherent links between different parts of the representation. The final activity showed that their representations reached Kozma & Russell’s (2005) highest level of competence, where the students were able to use specific features of their representations to critique their suitability for explaining bonding and were able to show how their representation linked to the periodic table as a representation. We conclude by considering the implications of these findings.  相似文献   

18.
Understanding the nature of science (NOS) has long been a desired outcome of science education, despite ongoing disagreements about the content, structure, and focus of NOS expectations. Addressing the concern that teachers likely focus only on student learning expectations appearing in standards documents, this study examines the current state of NOS in science education standards documents from nine diverse countries to determine the overt NOS learning expectations that appeared, NOS statements provided near those learning expectations, but not identified as learning outcomes (such as chart column headers or footnotes), and NOS statements found in ancillary text (e.g., introductory material or appendices). Findings indicate that NOS ideas rarely occur as expectations for student learning and are far more commonly found in ancillary material. Moreover, consensus was not apparent in the overt learning outcomes for students. Given the well-documented poor state of NOS instruction and the consistent lack of NOS appearing in published curriculum materials, the NOS standards appearing in nearly all documents analyzed are unlikely to provide sufficient conceptual or pedagogical support for NOS to be accurately interpreted or translated into meaningful experiences for students.  相似文献   

19.
Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students’ understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students’ understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher’s reflection journal. Pre-test–post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students’ texts provided further evidence of the students’ ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers’ approaches to these aspects of instruction around chemical bonding.  相似文献   

20.
The paper reports a study for determining a suitable process for converting traditional surface science courses into case‐based learning ones in two universities in Hong Kong. In this preparative study, a set of baseline data was collected on the current level of students’ conceptual understanding and also students’ perceptions about the traditional courses. The student data (from 38 students) came from examination results, the Study Process Questionnaire, a course‐end survey and a focus group meeting; teachers also kept reflective journals. This set of baseline data revealed factors that both support and inhibit case‐based learning. On the one hand, students demonstrate a motivation to be able to solve practical problems in this field; on the other hand, they show an unwillingness to take up a personal responsibility for learning. This finding strengthens our resolve to take into account students’ expectations and beliefs in the implementation of case‐based teaching and learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号