首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Practical examinations in anatomy are usually conducted on specimens in the anatomy laboratory (referred to here as the “traditional” method). Recently, we have started to administer similar examinations online using the quiz facility in Moodle?. In this study, we compare student scores between two assessment environments viz. online and traditional environments. We hypothesized that regardless of the examination medium (traditional or online) overall student performance would not be significantly different. For the online medium, radiological images, prosected specimens, and short video clips demonstrating muscle action were first acquired from resources used for teaching during anatomy practical classes. These were optimized for online viewing and then uploaded onto Moodle learning management software. With regards to the traditional format, actual specimens were usually laid out in a circular stream. Identification tags were then attached to specific spots on the specimens and questions asked regarding those identified spots. A cohort of students taking practical examinations in six courses was studied. The courses were divided into three pairs with each pair credit‐weight matched. Each pair consisted of a course where the practical examination was conducted online and the other in the traditional format. There was no significant difference in the mean scores within each course pair. In addition, a significant positive correlation between score in traditional and online formats was found. We conclude that mean grades in anatomy practical examination conducted either online or in the traditional format were comparable. These findings should reassure teachers intending to use either format for their practical examinations. Anat Sci Educ. © 2011 American Association of Anatomists.  相似文献   

2.
Anatomical examinations have been designed to assess topographical and/or applied knowledge of anatomy with or without the inclusion of visual resources such as cadaveric specimens or images, radiological images, and/or clinical photographs. Multimedia learning theories have advanced the understanding of how words and images are processed during learning. However, the evidence of the impact of including anatomical and radiological images within written assessments is sparse. This study investigates the impact of including images within clinically oriented single-best-answer questions on students' scores in a tailored online tool. Second-year medical students (n = 174) from six schools in the United Kingdom participated voluntarily in the examination, and 55 students provided free-text comments which were thematically analyzed. All questions were categorized as to whether their stimulus format was purely textual or included an associated image. The type (anatomical and radiological image) and deep structure of images (question referring to a bone or soft tissue on the image) were taken into consideration. Students scored significantly better on questions with images compared to questions without images (P < 0.001), and on questions referring to bones than to soft tissue (P < 0.001), but no difference was found in their performance on anatomical and radiological image questions. The coding highlighted areas of “test applicability” and “challenges faced by the students.” In conclusion, images are critical in medical practice for investigating a patient's anatomy, and this study sets out a way to understand the effects of images on students' performance and their views in commonly employed written assessments.  相似文献   

3.
Few realized the extent of disruption that the Covid-19 global pandemic would impose upon higher anatomical education. While many institutions were obliged to adopt a fully-remote online model, the New York Institute of Technology College of Osteopathic Medicine strove to develop a curriculum that would allow medical students to receive an in-person anatomy education. A hybrid model that emphasized learning from prosected cadavers and self-study stations was implemented, with the remainder of the students' time directed toward studying at home. Through an anonymous survey aimed at gleaning student satisfaction, this study demonstrates that this hybrid prosection-based anatomy course aligned with student preferences both assuming no health risk (64.6% agreed) and given the current risk of contracting Covid-19 (78.5% agreed). Generally, students felt that their education was equal to that of previous years (Likert scale = 3.24 ± 1.05), fostered an appreciation for anatomy (4.56 ± 0.59), promoted teamwork (4.13 ± 0.85), and prepared them for practical examinations (4.18 ± 0.74). Linear mixed-effect models demonstrated that specific differences in results could be attributed to students' preconceived preferences toward student-led dissections and to past medical training. Importantly, most students “disagree” (1.97 ± 1.00) that they were concerned about the risk of exposure to Covid-19 during in-person anatomy laboratory sessions. Areas requiring improvement were identified by the model, including the provision of access to the cadavers outside of the regularly scheduled laboratory times (3.89 ± 1.08). These findings should be utilized when designing future gross anatomy courses in response to the “new normal”.  相似文献   

4.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

5.
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi‐experimental‐control design, this study compared the effects of “Anatomy and Physiology Revealed” (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model‐based multimedia simulation tool that uses high‐resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver‐based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real‐world application of anatomical knowledge. Anat Sci Educ 7: 331–339. © 2014 American Association of Anatomists.  相似文献   

6.
While case-based discussions can empower students to apply knowledge to contextual clinical situations, scheduling these activities is a challenge in crowded curricula. Case-based eLearning activities, derived from existing cases discussed within anatomy small group tutorials, were created incorporating principles such as interactivity, reinforcement, and feedback. Over half of the students accessed one or more of these online cases, with 18% accessing all eight online cases provided. Access increased as the semester progressed, particularly just before summative examinations, implying students used these primarily as revision aides. Students rated both formats highly, but favored the online format with regard to enjoyment (P = 0.048), learning (P = 0.101), and feedback (P = 0.086). However, more students discussed these cases in small group tutorials within the anatomy dissecting room than completed them online (122 vs. 67) and themes emerging from free text comments included a desire to have more time dedicated to these cases during small group tutorials, and an appreciation for the opportunity for discussion with staff and learning through doing. Additionally, native English speakers rated the anatomy room discussions significantly higher in all aspects than non-native English speakers, suggesting that non-native speakers may be hesitant or reluctant to fully participate in front of peers. While online case-based learning activities are a useful adjunct to anatomy teaching, particularly for revision, assumptions that “digital natives” have an innate preference for digital resources require critical evaluation, as students still place a high value on opportunities for discussion with staff during their studies.  相似文献   

7.
The use of two‐dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low‐quality and high‐quality images of the human hand and human eye. On day 0, participants learned about each anatomical specimen from paper booklets using either low‐quality or high‐quality images, and then completed a comprehension test using either 2D images or three‐dimensional (3D) cadaveric specimens. On day 1, participants relearned each booklet, and on day 2 participants completed a final comprehension test using either 2D images or 3D cadaveric specimens. The effect of image quality on learning varied according to anatomical content, with high‐quality images having a greater effect on improving learning of hand anatomy than eye anatomy (high‐quality vs. low‐quality for hand anatomy P = 0.018; high‐quality vs. low‐quality for eye anatomy P = 0.247). Also, the benefit of high‐quality images on hand anatomy learning was restricted to performance on short‐answer (SA) questions immediately after learning (high‐quality vs. low‐quality on SA questions P = 0.018), but did not apply to performance on multiple‐choice (MC) questions (high‐quality vs. low‐quality on MC questions P = 0.109) or after participants had an additional learning opportunity (24 hours later) with anatomy content (high vs. low on SA questions P = 0.643). This study underscores the limited impact of image quality on anatomy learning, and questions whether investment in enhancing image quality of learning aids significantly promotes knowledge development. Anat Sci Educ 10: 249–261. © 2016 American Association of Anatomists.  相似文献   

8.
A stand‐alone online teaching module was developed to cover an area of musculoskeletal anatomy (structure of bone) found to be difficult by students. The material presented in the module was not formally presented in any other way, thus providing additional time for other curriculum components, but it was assessed in the final examination. The module was developed using “in‐house” software designed for academics with minimal computer experience. The efficacy and effectiveness of the module was gauged via student surveys, testing student knowledge before and after module introduction, and analysis of final examination results. At least 74% of the class used the module and student responses were positive regarding module usability (navigation, interaction) and utility (learning support). Learning effectiveness was demonstrated by large significant improvements in the post‐presentation test scores for “users” compared with “non‐users” and by the percentage of correct responses to relevant multiple choice questions in the final examination. Performance on relevant short answer questions in the final examination was, on average, comparable to that for other components. Though limited by study structure, it was concluded that the module produced learning outcomes equivalent to those generated by more traditional teaching methods. This “Do‐It‐Yourself” e‐learning approach may be particularly useful for meeting specific course needs not catered for by commercial applications or where there are cost limitations for generation of online learning material. The specific approaches used in the study can assist in development of effective online resources in anatomy. Anat Sci Educ 6: 107–113. © 2012 American Association of Anatomists.  相似文献   

9.
The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students’ dissection course was completed. All of the cadavers were embalmed in a formalin‐based fixative solution. The tissue was processed, embedded in paraffin, sectioned at six micrometers, and stained with H&E. The microscope slides were evaluated by a board certified pathologist to determine whether the cellular components of the tissues were preserved at a high enough quality to allow for histopathologic diagnosis. There was a statistically significant relationship between ratings and organ groups. Across all organs, there was a smaller proportion of “poor” ratings. The lung group had the highest percentage of “poor” ratings (23.1%). The heart group had the least “poor” ratings (0.0%). The largest percentage of “satisfactory” ratings were in the lung group (52.8%), and the heart group contained the highest percentage of “good” ratings (58.5%) The lung group had the lowest percentage of “good” ratings (24.2%). These results indicate that heart tissue is more reliable than lung, kidney, or liver tissue when utilizing tissue from the gross anatomy laboratory for research and/or educational purposes. This information advises educators and researchers about the quality and histopathologic reliability of tissue samples obtained from the gross anatomy laboratory. Anat Sci Educ 11: 207–214. © 2017 American Association of Anatomists.  相似文献   

10.
Many nursing curricula do not offer anatomy laboratories and exposure to cadaveric material. In this mixed methods study, nursing students' perceptions and experiences from an anatomy laboratory session were examined. Students from two academic nursing programs (a four-year general baccalaureate nursing program and a two-year accelerated nursing program for non-nursing baccalaureate graduates) took part in an anatomy laboratory session (N = 223). Participants' learning experiences, emotional experiences, and satisfaction with the anatomy laboratory session were assessed by their responses to closed-ended questionnaires. Participants' reasons for participation and suggestions for improvement were examined by open-ended questions. A mixed methods analysis of the data revealed a high level of satisfaction with the anatomy laboratory experience. Positive attitudes and learning experiences correlated with a sense of identification with the nursing profession. Satisfaction was positively associated with a perceived quality of learning and negatively associated with a negative emotional experience. Curiosity and self-challenge, as well as the quest for tangible, in-depth learning, were major motivators involved in the students' desire to participate in the session. Both qualitative and quantitative analyses indicated that the educational experience was significant. Therefore, it is recommended to integrate anatomy laboratory sessions into anatomy courses for nursing students. This will help to illustrate and assimilate classroom material and strengthen nursing students' sense of identification with their profession.  相似文献   

11.
Traditionally, an anatomy practical examination is conducted using a free response format (FRF). However, this format is resource‐intensive, as it requires a relatively large time investment from anatomy course faculty in preparation and grading. Thus, several interventions have been reported where the response format was changed to a selected response format (SRF). However, validity evidence from those interventions has not proved entirely adequate for the practical anatomy examination, and thus, further investigation was required. In this study, the validity evidence of SRF was examined using multiple choice questions (MCQs) constructed according to different levels of Bloom's taxonomy in comparison with the traditional free response format. A group of 100 medical students registered in a gross anatomy course volunteered to be enrolled in this study. The experimental MCQ examinations were part of graded midterm and final steeplechase practical examination. Volunteer students were instructed to complete the practical examinations twice, once in each of two separate examination rooms. The two separate examinations consisted of a traditional free response format and MCQ format. Scores from the two examinations (FRF and MCQ) displayed a strong correlation, even with higher level Bloom's taxonomy questions. In conclusion, the results of this study provide empirical evidence that the SRF (MCQ) response format is a valid method and can be used as an alternative to the traditional FRF steeplechase examination. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

12.
Several studies have shown that the standard error of measurement (SEM) can be used as an additional “safety net” to reduce the frequency of false‐positive or false‐negative student grading classifications. Practical examinations in clinical anatomy are often used as diagnostic tests to admit students to course final examinations. The aim of this study was to explore the diagnostic value of SEM using the likelihood ratio (LR) in establishing decisions about students with practical examination scores at or below the pass/fail cutoff score in a clinical anatomy course. Two hundred sixty‐seven students took three clinical anatomy practical examinations in 2011. The students were asked to identify 40 anatomical structures in images and prosected specimens in the practical examination. Practical examination scores were then divided according to the following cutoff scores: 2, 1 SEM below, and 0, 1, 2 SEM above the pass score. The positive predictive value (+PV) and LR of passing the final examination were estimated for each category to explore the diagnostic value of practical examination scores. The +PV (LR) in the six categories defined by the SEM was 39.1% (0.08), 70.0% (0.30), 88.9% (1.04), 91.7% (1.43), 95.8% (3.00), and 97.8% (5.74), respectively. The LR of categories 2 SEM above/below the pass score generated a moderate/large shift in the pre‐ to post‐test probability of passing. The LR increased the usefulness and practical value of SEM by improving confidence in decisions about the progress of students with borderline scores 2 SEM above/below the pass score in practical examinations in clinical anatomy courses. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

13.
Prior to the challenges imposed by the Covid-19 pandemic, anatomy practical sessions at Trinity College Dublin involved eight to 10 students per donor station, rotating between digital learning, anatomical models/osteology, and dissection activities for three hours weekly. To maintain cadaveric participation in the anatomy laboratory while adhering to distancing guidelines, a transition to dyad pedagogy was implemented. This mode of delivery allowed two students per donor station to spend one hour per week in the anatomy laboratory with all digital learning elements transferred to the virtual learning platform Blackboard as pre- and post-practical session learning activities. Dyad pedagogy has been explored in clinical settings and simulation procedural-based training but is yet to be fully verified in anatomy education. To determine the effectiveness of hybrid practical sessions and reduced donor to student ratios, the opinions of first year medical students were examined using an online questionnaire with a 51% response rate. Although students recognized the merits of more time in the anatomy laboratory, including opportunities for self-directed study and exposure to anatomical variation, they felt that having two students per station enabled sufficient hands-on time with the donor body and fostered learning opportunities that would not be possible with larger groups. Strong preferences for quality time with the donor body supported by online resources suggests this modality should be a key consideration in course design for anatomy curricula and emphasizes the importance of gauging students' preferences to optimize satisfaction and learning output when pivoting to blended learning strategies in anatomy education.  相似文献   

14.
Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first‐year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound‐guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five‐point scale. Cognitive load on using ultrasound was measured on a nine‐point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on “image interpretation” was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = ?0.22; P = 0.61]. Weighted factor score on “basic knobology” was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144–151. © 2016 American Association of Anatomists.  相似文献   

15.
16.
Web deployable anatomical simulations or “virtual reality learning objects” can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug‐ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform‐specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or “dimensions” of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi‐structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in “ebook” document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self‐adopted for mobile learning. Anat Sci Educ 6: 263–270. © 2012 American Association of Anatomists.  相似文献   

17.
18.
Growing evidence supports the use of reflective writing activities centered around the human cadaveric dissection experience to support and assess elements of medical student wellness. Dissection may promote personal and professional development, increase resilience, and foster a sense of connection and community. This study employed a qualitative analysis of a reflective writing exercise to explore the question: “What is the impact of the cadaveric dissection anatomy experience on the personal and professional development of medical students?” This cross-sectional study was conducted at the conclusion of the first-year anatomy module. A total of 117 United States allopathic medical students were given a questionnaire designed to elicit the students' experiences and introspection. The exercise included four reflective questions that were provided to 20 groups of six students. Grounded theory analysis was used to explore themes that arose in students' responses. Participants exhibited several common reactions to cadaveric dissection. After analyzing all responses, 266 unique open codes were identified for all four questions. These open codes were sorted into ten distinct axial codes, which are broader categorical themes of open codes. The aims of our study were to identify themes that emerged as students reflected on the impact of their dissection experience using reflective writing as a tool to capture these themes and to gather information to inform pedagogical methodologies. The researchers observed that the educational effects of dissection captured in the reflective writing resembled those found in other areas of medical education that emphasize professional identity formation and important humanistic qualities.  相似文献   

19.
As medical programs place increasing importance on competency-based training and surgical simulations for residents, anatomy laboratories, and body donation programs find themselves in a position of adapting to changing demands. To better assess the demand for “life-like” cadaveric specimens and evaluate the possible impacts that competency-based medical education could have upon the body donation program of McGill University, Canada, the authors tracked, over the course of the last 10 years, the number of soft-embalmed specimens, along with the number of teaching sessions and the residents enrolled in competency-based programs that are using cadaveric material. The results reveal that the number of soft-embalmed specimens used within residency training increased from 5 in 2009 to 35 in 2019, representing an increase from 6% of bodies to 36.5% of the total number of body donors embalmed in this institution. Correspondingly, the number of annual teaching sessions for residents increased from 19 in 2012 to 116 in 2019. These increases in teaching are correlated with increasing number of residents enrolled in competency-based programs over the last 3 years (Pearson r ranging from 0.9705 to 0.9903, and R2 ranging from 0.9418 to 0.9808). Those results suggest that the new skill-centered curricula which require residents to perform specific tasks within realistic settings, exhibit a growing demand for “life-like” cadaveric specimens. Institutions’ body donation programs must, therefore, adapt to those greater need for cadaveric specimens, which presents many challenges, ranging from the logistical to the ethical.  相似文献   

20.
Recognition of anatomical landmarks in live animals (and humans) is key for clinical practice, but students often find it difficult to translate knowledge from dissection‐based anatomy onto the live animal and struggle to acquire this vital skill. The purpose of this study was to create and evaluate the use of an equine anatomy rug (“Anato‐Rug”) depicting topographical anatomy and key areas of lung, heart, and gastrointestinal auscultation, which could be used together with a live horse to aid learning of “live animal” anatomy. Over the course of 2 weeks, 38 third year veterinary students were randomly allocated into an experimental group, revising topographical anatomy from the “Anato‐Rug,” or a control group, learning topographical anatomy from a textbook. Immediately post activity, both groups underwent a test on live anatomy knowledge and were retested 1 week later. Both groups then completed a questionnaire to ascertain their perceptions of their learning experiences. Results showed that the experimental groups scored significantly higher than the control group at the first testing session, experienced more enjoyment during the activity and gained more confidence in identifying anatomical landmarks than the control group. There was not a significant difference in scores between groups at the second testing session. The findings indicate that the anatomy rug is an effective learning tool that aids understanding, confidence, and enjoyment in learning equine thorax and abdominal anatomy; however it was not better than traditional methods with regards to longer term memory recall. Anat SciEduc. © 2012 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号