首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]介绍了关于三角形边角关系的两个结论.实际上,在三角形中还有命题1设a,b,c为△ABC的三边长,当an,bn,cn(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且an,bn,cn(n∈N*)成等比数列.所以b2n=ancn,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.命题2设a,b,c为△ABC的三边长,当a1n,b1n,c1n(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且a1n,b1n,c1n成等比数列,所以(b1n)2=a1n·c1n.即b12=a1c,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.由命题1和命题2得定理设a,b,c为…  相似文献   

2.
文[1]给出如下结论:在△ABC中,设I是它的内心,a,b,c分别是∠A,∠B,∠C的对边,R是△ABC的外接圆半径,则有AI BI CI≤ab bc ca.(1)1AI 1BI 1CI≥3R.(2)bcAI caBI abCI≥33.(3)本文给出两个更一般的结论:定理 在△ABC中,设I是它的内心,a,b,c分别是∠A,∠B,∠C的对边,对于正数x,y,z有xAI yBI zCI≤abx2 bcy2 caz2.(4)xAI yBI zCI≥333xyzabc.(5)证明 设s,R,r分别是△ABC的半周长、外接圆半径、内切圆半径.易知:AI=rsinA2=2rcosA2sinA=4RrcosA2a,同理 BI=4RrcosB2b,CI=4RrcosC2c.所以 xAI yBI zCI=4Rrabc(xbcc…  相似文献   

3.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

4.
关于三角形中线的一个不等式   总被引:1,自引:0,他引:1  
196 7年 ,V .O .Cordon建立了三角形的边长与高之间的不等式∑ a2h2b+h2c≥2 .[1] ①文 [2 ]将不等式①加强为∑ a2t2b+t2c≥2(ta、tb、tc 为三角形的内角平分线长 ,a、b、c为△ABC的边长 ,∑ 表示对a、b、c循环求和 ) .本文将证明 ∑ a2m2b+m2c≤2 (ma、mb、mc为三角形的中线长 ) ,等号当且仅当△ABC为正三角形时成立 .证明 :∑ a2m2b+m2c=∑ 4a24a2 +b2 +c2=∑ 4a22a2 + (a2 +b2 ) + (a2 +c2 )≤∑ 4a22a2 + 2ab + 2ac=∑ 2aa +b +c=2 ,当且仅当△ABC为正三角形时等号成立 .利用上述方法和凸函数的性质 ,易得∑ akmkb+mkc≤2 k- 1  …  相似文献   

5.
文 [1 ]给出∑ 1a2 的上界估计 ,即设a、b、c为△ABC的三边长 ,R、r分别表示△ABC的外接圆、内切圆半径 ,则有∑ 1a2 ≤(R2 +r2 ) 2 +Rr(2R - 3r) 2R2 r3 (1 6R - 5r) .①文 [2 ]将①式加强为∑ 1a2 ≤ 14r2 .②本文给出∑ 1a2 的下界估计∑ 1a2 ≥ 12Rr.③证明 :∑ 1a2 =b2 c2 +a2 c2 +a2 b2a2 b2 c2≥(bc) (ac) +(ac) (ab) +(bc) (ab)a2 b2 c2=c+a +babc .由三角形中的恒等式a +b +c =2p(其中p为半周长 ) ,abc =4Rrp代入上式即得③ .有趣的是由②和③可得2r≤ 12r∑ 1a2≤R .这里又出现了欧拉不等式的一个隔离 .sum((1/(a~2))的下界…  相似文献   

6.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

7.
在△ABC中,设△ABC的面积为S,角A,B,C所对的边分别为a,b,c,则有下列不等式链:a^2+b^2+c^2≥bc+ca+ab≥4√3S.①类比此不等式,文[1]得到一个类似不等式:a^2 sinA/2+b^2 sinB/2+c^2 sin C/2≥bcsin A/2+ca sin B/2+ab sin C/2≥2√3S.  相似文献   

8.
有关高线的一个不等式   总被引:1,自引:0,他引:1  
在文献 [1]中 ,有下面一个关于三角形高线的不等式 :ha+rha- r+hb+rhb- r+hc+rhc- r≥ 6 . (Cosnita-Turtoiu) (1)其中 ha,hb,hc 和 r分别为△ ABC相应边上的高线和内切圆半径 .本文试图给出 (1)式左端的一个上界 ,即证明H =ha+rha- r+hb+rhb- r+hc+rhc- r<7. (2 )由 ha =2 Sa,r =2 Sa+b+c(这里 S是△ ABC的面积 ) ,可得 har=a+b+ca ,代入 (2 )可以求得H=har+1har- 1+hbr+1hbr- 1+hcr+1hcr- 1=3+2 (ab+c+ba+c+ca+b) . (3)为了确定起见 ,不妨可设 a≥ b≥ c,且进一步设 a=xc,b=yc,再由 b+c>a,可得 1≤y≤ x<1+y.将 a,b代入 (3)化简后得…  相似文献   

9.
I为△ABC的内心,本文对AI,BI,CI这三个量,从它们的和,倒数和,乘积,平方和以及开平方倒数和等几个方面进行研究,得到了以下几个结论,其中每个命题中的等号都是当且仅当△ABC为正三角形时取得,不赘述.为了行文方便,记△ABC中三个内角分别为A,B,C,其对边分别是a,b,c,△ABC的外接圆和内切圆的半径分别是R,r,面积和半周长分别为△,p=a+b+c/2.先给出一个 引理 [1]中第60页的5.18给出结论:ab+ bc+ ca≤4(R+r)2≤9R2.  相似文献   

10.
设△ ABC的三边长为 a、b、c,相应边上的高为 ha、hb、hc,其外接圆和内切圆半径分别为 R和 r,半周长为 p,面积为△ .1 987年 ,D.M.Milosevic证明了 :∑ ahb+ hc≥ 93 R2 (4 R + r) (1 )1 999年 ,姜卫东等给出了 (1 )的一个加强 :∑ ahb+ hc≥ 9R2 p (2 )以上“∑”表示循环和 ,下同 .本文讨论左端的上界 ,得到了下面的定理 在△ ABC中 ,有∑ ahb+ hc≤ p3 r (3 )其中等号成立当且仅当△ ABC是正三角形 .证明 :不妨设 a≥ b≥ c (4 )则 hb-hc=2△b -2△c =2△ (c-b)bc ≤ 0即 hb≤ hc,同理 ha ≤ hb.所以 ha ≤ hb≤ hc从而 1hb+ hc…  相似文献   

11.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

12.
笔者在研究三角形中的不等式时得到下面几个有趣的三角形不等式,即 定理1 在△ABC中,设a,b,c分别为BC,CA,AB的边长,相应于顶点A,B,C,△ABC的中线长为ma,mb,mc;内角平分线长为wa,wb,wc;高线长为ha,hb,hc,旁切圆半径为ra,rb,rc,△ABC的面积为S,则4S√m2a/r2a+m2b/r2b+m2c/r2c≥ab+bc+ac≥4S√m2a/ω2a+m2b/ω2b+m2c/ω2c≥4√3S.(1)  相似文献   

13.
董林 《中等数学》2004,(6):19-19
命题 设△ABC的三边长、外接圆半径、内切圆半径分别为a、b、c、R、r.则有b2 c22bc ≤ R2r.①证明 : 记△ABC的面积为S .由abc =4RS及S =12 r(a b c)知式①等价于b2 c22bc ≤abc(a b c)1 6S2 .②由海伦公式知1 6S2 =(a b c) (b c -a)·(c a -b) (a b -c) .③则式②等价于1 6S2 (b2 c2 ) ≤2ab2 c2 (a b c) (a b c) (b c-a) (c a -b)·(a b-c) (b2 c2 ) ≤2ab2 c2 (a b c) 2ab2 c2 - (b c -a) (c a -b)·(a b -c) (b2 c2 ) ≥0 b2 [ac2 - (b c-a) (c a -b)·(a b -c) ] c2 [ab2 - (b c-a)·(c a -b) (a …  相似文献   

14.
文[1]给出了关于三角形中线的一个不等式,即“在△ABC中,成立不等式 ab/m_am_b+bc/m_bm_c+ca/m_cm_a≥4,等号当且仅当△ABC为正三角形时成立。”下面利用上述结论证明文[2]中的一个几何不等式。题目设△ABC的重心为G,AG,BG,CG的延长线分别交三边BC,CA,AB于D,E,F,交△ABC的外接圆于A′,B′,C′,求证: A′D/DA+B′E/EB+C′F/FC≥1, 证明:设BC=a,CA=b,AB=c,AD=m_a,BE=m_b,CF=m_c。  相似文献   

15.
正(数学(高二上册))达标训练二填空题第一题是这样的:已知a,b,c是△ABC的三条边,比较大小(a+b+c)24(ab+bc+ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a+b+c)2=9,4(ab+bc+ca)=12,所以(a+b+c)24(ab+bc+ca).将这道题稍微变形,就是全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第31页B组题的第6题:设a,b,c为△ABC的三边,求证:a2+b2+c22(ab+bc+ca).这道题的解法紧紧围绕三角形的边的特征,依据不同的思维,不同的入口结合不等式证明的不同方法,可以得到不同的证法.并且依据已经证明的结论,还可以进行引申.  相似文献   

16.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

17.
正一、问题提出题已知△ABC中,3(1/2)tanA·tanB-tanA-tanB=3(1/2).(1)求∠C的大小;(2)设角A,B,C的对边依次为a,b,c,若c=2且△ABC是锐角三角形,求a2+b2的取值范围.解(1)C=π/3(略).(2)学生解1:由余弦定理得a2+b2-ab=4.  相似文献   

18.
在△ABC和△A′B′C′中,有如下的不等式1/aa′+1/bb′+1/cc′≥1/RR′   (1)其中a、b、c、R,a′、b′、c′、R′分别为△ABC和△A′B′C′的三边和外接圆半径,等号成立当且仅当a=b=c且a′=b′=c′。本文将其推广到双圆四边形(即既有外接圆又有内切圆的四边形),并给出几个猜想。定理 设双圆四边形ABCD、A′B′C′D′的边分别为a、b、c、d,a′、b′、c′、d′。它们的外接圆半径为分别为R、R′,则1/aa′+1/bb′+1/cc′+1/dd′≥2/RR′   (2)等号成立当且仅当a=b=c=d且a′=b′=c′=d′证明:首先我们有a2+b2+c2+d2≤8R2  …  相似文献   

19.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

20.
定理 设ABCD为双圆四边形 ,R、r分别为外接、内切圆半径 ,r1、r2 分别为△ABC、△ADC的内切圆半径 ,则有R≥4r (r -r1) (r-r2 )r1 r2.①证明 :记AB =a ,BC =b ,CD =c,DA =d ,△ABC、△ADC的面积分别为Δ1、Δ2 ,四边形ABCD的面积为Δ ,半周长为 p ,则Δ1=12 r1(a b AC) ,Δ2 =12 r2 (c d AC) .由Δ =Δ1 Δ2 ,得2Δ =r1(a b) r2 (c d) AC(r1 r2 ) .由文 [1 ]知Δ =abcd ,R =14(ab cd) (ac bd) (ad bc)abcd12 ,∴AC =(ac bd) (ad bc)ab cd12 =4RΔab cd≤4RΔ2Δ =2R ,∴ 2Δ≤r1(a b) r2 (c d) 2R(r1 r2 )…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号