首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一元二次方程ax~2+bx+c=0和二次函数y=ax~2+bx+c的关系密不可分。在y=ax~2+bx+c中,当y=0时,就变成了ax~2+bx+c=0。而一元二次方程ax~2+bx+c=0的两根x_1,x_2,就是二次函数y=ax~2+bx+c的图象与x轴交点的横坐标。因此,根与系数的关系不但可以用于方程这中,也常用于二次函数之中。 一 求待定系数的值 例1 抛物线y=x~2-(2m-1)x-2m与x轴的  相似文献   

2.
定理1.整系数一元二次方程ax~2+bx+c=0(a≠0)存在整数解x=0的条件是c=0;存在整数解x=1的条件是a+b+c=0;存在整数解x=-1的条件是a-b+c=0。证明:x=0是ax~2+bx+c=0的解  相似文献   

3.
1.为什么要规定一元二次方程ax~2+bx+c=0中a≠0? 答当a=0时,方程变成了bx+c=0,这就不是一元二次方程了. 2.关于x的方程x~2(x+3)+2y-8x=x~3+2y-9(*)是一元二次方程吗?  相似文献   

4.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

5.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

6.
二次函数与一元二次方程之间有着密切的联系.在二次函数y=ax~2+bx+c(a≠0)中.令y=0,即得一元二次方程ax~2+bx+c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的判别式△=b~2-4ac,即  相似文献   

7.
解一元二次方程及判断一元二次方程是否有解,是一元二次方程一章的两个重点,除要掌握基本方法外,适当的掌握一些常见的技巧可以提高学习的效率。一、解法选择技巧解一元二次方程的基本方法有:直接开平方法、配方法、因式分解法、公式法,如何快速选择方法,有一定的技巧.对于一元二次方程一般式ax~2+bx+c=0(a≠0,a、b、c是常数),其中a≠0,但b、c可以为0,因此方程ax~2=0,ax~2+bx=0,ax~2+c=0,这些形式的方程因为缺项,也叫不完全的一元二次方程,是一元二次方程的特殊形式,因此解法也就会有不同的技巧.对于一元二次方程ax~2+bx+c=0中的常数项c=  相似文献   

8.
某些一元二次方程的代数问题,如对方程进行适当的变形后进行代换,常常使所求问题化繁为易.现举例介绍几种常用的变形技巧,供参考.一、将一元二次方程 ax~2+bx+c=0变形为 ax~2=-bx-c,或ax~2+bx=-c 或 ax~2+c=-bx 进行代换  相似文献   

9.
某些一元二次方程的代换问题,若对方程进行适当的变形后进行代换,会使所求问题化繁为简。现举例介绍几种常用的变形技巧。一、将一元二次方程ax~2+bx+c=0变形为ax~2=-bx-c,或ax~2+bx=-c或ax~2+c=-bx进行代换  相似文献   

10.
对于实系数一元二次方程 ax~2+bx+c=0(a≠0) (*)当△=b~2-4ac≥0时有实根,且实根的分布情况常借助抛物线y=ax~2+bx+c (a≠0)与x轴的交点来实现的。当△=b~2-4ac<0时,方程(*)无实根。由于在复数范围内,任何一个实系数一元二次方程都有两个根,因此,当△=b~2-4ac<0时,方程(*)只有两个虚根且共轭。显然,这两个虚根对应的点不在x轴上。那么虚  相似文献   

11.
二次函数y=ax~2+bx+c(a≠0),若令y=0,即为一元二次方程ax~2+bx+c=0(a≠0).由此可见,二次函数与一元二次方程之间有着密切的联系.用数形结合的思想来理解,对它们之间的内在联系的认识将更为深刻,更有利于灵活地解题,提高解题水平.  相似文献   

12.
对于一元二次方程ax~2+bx+c=0 (a≠0),如果a+b+c=0.那么x=1是这个方程的解.运用这一简单结沦可以巧妙解决一类竞赛题.例1设方程2004~2x~2-2003·2005x-1 =0的大根为a,方程x~2+2004x-2005=0的  相似文献   

13.
知识链接 一元二次方程ax~2+bx+c=0(a≠0)的根的判别式△=b~2-4ac可用来判断方程根的情况。 ①△>0方程有两个不相等的实数根; ②△=0方程有两个相等的实数根; ③△<0方程没有实数根. 一、不解方程,判断一元二次方程根的情 例1 一元二次方程2x~2-4x+1=0的根的情况是( )。 (A)有两个不相等的实数根 (B)有两个相等的实数根  相似文献   

14.
大家知道,使方程左、右两边的值相等的未知数的值,叫做方程的根.根据根的定义,如果x_0是一元二次方程ax~2+bx+c=0的根,那么ax_0~2+bx_0+c=0;反之,如果ax_0~2+bx_0+c=0,那么必是方程ax~2+bx+c=0的一个根  相似文献   

15.
利用一元二次方程的求根公式,可以证明:方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0两根的a倍(a≠0)。运用这个结论,可以很快解决求作一个一元二次方程且使它的根分别是已知方程的各根的几倍问题。例1求作一个一元二次方程,使它的两根分别是方程3x~2-16x+5=0的两根的3倍。解:因为方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0的两根的a倍,所以,所求作的一元二次方程是x~2-16x+3×5=0,即x~2-16x+15=0.如果已知方程的二次项系数刚好等于所求方程的的根是已知方程各根的倍数,那么,就用已知方程二次项系数移乘常数项,二次项系数改为1,一次项不  相似文献   

16.
<正>二次函数与一元二次方程是数学的基础知识,它们之间具有千丝万缕的联系。二次函数y=ax~2+bx+c(a≠0)的图像与x轴有交点时,交点横坐标的值就是方程ax~2+bx+c=0(a≠0)的根。在一元二次方程中,当b~2-4ac>0时,方程有两个不相等的实数根;当b~2-4ac=0时,方程有两个相等的实数根;当b~2-4ac<0时,方程无实数根。其对应的二次函数图像与x轴分别有两个交点、一个交点和无交点。一、二次函数的交点问题  相似文献   

17.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

18.
学过一元二次方程的人都知道:由于人们找到了一元二次方程ax~2+bx+c=0(a(?)0)的求根公式,以后只要  相似文献   

19.
<正> 性质若a+b+c=0,则x=1是关于x的一元二次方程ax2+bx+c=0的根;若a-b+c=0,则x=-1是关于x的一元二次方程ax2+bx+c=0的根. 运用一元二次方程的根的定义不难证明这一性质.而灵活运用  相似文献   

20.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号