首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conclusion The basic assumption underlying this study is that science teachers have misconceptions in some selected science concepts. The overall conclusion which can be drawn is that, although the responses were not consistent across the concepts or within the concepts, there are indeed misconceptions. The result is evidence that the graduate trainee teachers have misconceptions in science. The results show that the view of science held by this group of trainee teachers is sometimes little better than the view of science held by students investigated by Osborne et al. The test appears appropriate for use with science teachers. What do these results imply? They suggest that science teachers may have concepts which are little better than the students they teach. If that is the case, then, is it reasonable to urge teachers to probe their students' concepts before teaching them? Should science educators then redirect their efforts in conceptual change to changing teachers' views before changing students' views?  相似文献   

2.
This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the students’ level of word knowledge manifested in their talk. In this framework, highly developed knowledge of a word is conceptual knowledge. This includes understanding how the word is situated within a network of other words and ideas. The results suggest that students’ level of word knowledge develops toward conceptual knowledge when the students are required to apply the key concepts in their talk throughout all phases of inquiry. When the students become familiar with the key concepts through the initial inquiry activities, the students use the concepts as tools for furthering their conceptual understanding when they discuss their ideas and findings. However, conceptual understanding is not promoted when teachers do the talking for the students, rephrasing their responses into the correct answer or neglecting to address the students’ everyday perceptions of scientific phenomena.  相似文献   

3.
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.  相似文献   

4.
This paper is about a longitudinal study to investigate how student‐teachers developed understanding of some key ecological concepts during a teacher education programme. Another aim was to interpret the student‐teachers' intentions in respect of the programme and to examine how these intentions influenced their learning. A group of students were followed through 2.5 years of a teacher education programme. The whole student group (n = 47–60) answered a questionnaire three times. Their understanding of scientific concepts, relevant to environmental education, was examined. Fourteen students were interviewed three times about a newspaper article discussing the use of surplus heat from a crematorium. The students were also asked about expectations of the teaching programme and of learning experiences from their science courses and from school practice. It is concluded that many of the student‐teachers did not develop the conceptual understanding necessary to be able to engage with the socio‐scientific issue presented to them. It also concludes that many of the student‐teachers approach the learning of science content from the perspective of their personal notions of the tasks of a primary schoolteacher, which is significantly different from the perspectives underpinning the curriculum and the intention of teacher educators. The connection between these two conclusions is discussed.  相似文献   

5.
Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life – an aim consistent with the notion of scientific literacy.

Purpose: This paper reports Bangladeshi science teachers’ perspectives and practices in regard to the promotion of scientific literacy.

Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications.

Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers’ science lessons, interviewing them twice – once before and once after the lesson observation, and interviewing their students in focus groups.

Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students’ difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition.

Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers’ ability to develop the concepts of scientific literacy and learn how to teach for its promotion.  相似文献   

6.
In teaching physics, the history of physics offers fruitful starting points for designing instruction. I introduce here an approach that uses historical cognitive processes to enhance the conceptual development of pre-service physics teachers’ knowledge. It applies a method called cognitive-historical approach, introduced to the cognitive sciences by Nersessian (Cognitive Models of Science. University of Minnesota Press, Minneapolis, pp. 3–45, 1992). The approach combines the analyses of actual scientific practices in the history of science with the analytical tools and theories of contemporary cognitive sciences in order to produce knowledge of how conceptual structures are constructed and changed in science. Hence, the cognitive-historical analysis indirectly produces knowledge about the human cognition. Here, a way to use the cognitive-historical approach for didactical purposes is introduced. In this application, the cognitive processes in the history of physics are combined with current physics knowledge in order to create a cognitive-historical reconstruction of a certain quantity or law for the needs of physics teacher education. A principal aim of developing the approach has been that pre-service physics teachers must know how the physical concepts and laws are or can be formed and justified. As a practical example of the developed approach, a cognitive-historical reconstruction of the electromagnetic induction law was produced. For evaluating the uses of the cognitive-historical reconstruction, a teaching sequence for pre-service physics teachers was conducted. The initial and final reports of twenty-four students were analyzed through a qualitative categorization of students’ justifications of knowledge. The results show a conceptual development in the students’ explanations and justifications of how the electromagnetic induction law can be formed.  相似文献   

7.
Research has shown that students’ alternative conceptions in science are quite resistent to change, which indicates that the teaching strategies used are not appropriate and that new strategies should be implemented in order to promote conceptual change. This pilot study was carried out with 100 Portuguese 5th grade students and aims: (a) to investigate a teaching strategy geared to the students’ conceptual change, taking into account their misconceptions about scientific ideas; (b) to promote a better attitude towards science. The results of this study indicate that the teaching approach based on the pupils’ alternative ideas and that makes them reflect on their own work and ideas, seemed to increase learning of scientific concepts related to the topic ‘properties and corpuscular model of the air’ and consequently favoured conceptual change better than a ‘traditional’ approach.  相似文献   

8.
This study further extends a conceptual framework that explores science teaching as a “practice” not reducible to the application of formal knowledge, but as informed by teachers' practical‐moral knowledge. A hermeneutic model was developed to examine practical‐moral knowledge indirectly by investigating teachers' commitments, interpretations, actions, and dialectic interactions between them. The study also aimed to analyze teachers' actions in terms of their interpretations and commitments as they realize “internal goods” of their practice. Ethnographic case studies of three science teachers were conducted through classroom observation, in‐depth interviews and dialogues, and artifact analysis. A commitment of preparing students for national exams was common to the three teachers but was manifested differently in classroom practices. This commitment originated from interpretations about the duty of “good” teachers not letting students and schools down. Other emergent commitments were commitments: to conceptual understandings, to “challenge” learners, and to social modeling. We present each with associated interpretations and actions. The concepts of practical wisdom (phronesis) and gap closing are used to characterize teachers' practical knowledge and its development respectively. Implications for teacher education are discussed. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 929–951, 2010  相似文献   

9.
Reading the interesting article Discerning selective traditions in science education by Per Sund, which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.  相似文献   

10.
The purpose of this study was to examine changes in personal science teaching self-efficacy (PSTE), outcome expectancy (STOE), and science conceptual understanding and relationships among these in preservice teachers. Seventy preservice teachers enrolled in science teaching methods courses participated in this study. PSTE, STOE, and science conceptual understanding increased significantly during participation in the course. The study established that novice learners with minimal prior knowledge couldn't be expected to understand and employ core concepts in their learning schema without extensive guidance. The relationship between science learning confidence and science teaching confidence has not been theoretically delineated in the area of science teacher education. Findings suggest that there may be important connections between the two for preservice teachers that would be fruitful areas for future research.  相似文献   

11.
This study examined changes in personal science teaching self-efficacy (PSTE), outcome expectancy (STOE), and science conceptual understanding and relationships among these in preservice teachers. Seventy preservice teachers enrolled in science teaching methods courses participated in this study. PSTE, STOE, and science conceptual understanding increased significantly during participation in the course. The study established that novice learners with minimal prior knowledge could not be expected to understand and employ core concepts in their learning schema without extensive guidance. The relationship between science learning confidence and science teaching confidence has not been theoretically delineated in the area of science teacher education. Findings suggest there may be important connections between the 2 for preservice teachers that would be fruitful areas for future research.  相似文献   

12.
This study explores the perceptions of culturally relevant science teaching of 35 teachers of American Indian students. These teachers participated in professional development designed to help them better understand climate change science content and teaching climate change using both Western science and traditional and cultural knowledge. Teacher perceptions of practices using culturally relevant instruction were evaluated. The data were analyzed both quantitatively and qualitatively. The results from the survey analysis show that the teachers’ existing practices of culturally relevant science teaching were limited in choosing topics relevant to American Indian culture. We found three common themes from the teachers’ perceptions of culturally relevant science teaching, meaning of culturally relevant science teaching, teaching strategies, and purpose of culturally relevant science teaching from the qualitative data. We also found that teachers with higher survey scores perceive culturally relevant science teaching differently than teachers with lower survey scores, specifically for the purposes and teaching strategies of culturally relevant science teaching. The results show that teachers with higher survey scores tended to perceive culturally relevant science teaching as a two-way learning process between teachers and students where the teachers can learn traditional science knowledge from the students. They also tend to perceive using concrete traditional science examples as effective teaching strategy for culturally relevant science teaching and building strong relationships with American Indian students as the most important purpose of culturally relevant science teaching. We also discuss common challenges faced by science teachers when trying to implement culturally relevant science teaching with American Indian students.  相似文献   

13.
This paper investigates the views of science and scientific activity that can be found in chemistry textbooks and heard from teachers when acid–base reactions are introduced to grade 12 and university chemistry students. First, the main macroscopic and microscopic conceptual models are developed. Second, we attempt to show how the existence of views of science in textbooks and of chemistry teachers contributes to an impoverished image of chemistry. A varied design has been elaborated to analyse some epistemological deficiencies in teaching acid–base reactions. Textbooks have been analysed and teachers have been interviewed. The results obtained show that the teaching process does not emphasize the macroscopic presentation of acids and bases. Macroscopic and microscopic conceptual models involved in the explanation of acid–base processes are mixed in textbooks and by teachers. Furthermore, the non‐problematic introduction of concepts, such as the hydrolysis concept, and the linear, cumulative view of acid–base theories (Arrhenius and Brönsted) were detected.  相似文献   

14.
Integrated science teaching is a task which requires that teachers develop new conceptual structures for the science topics they teach. It is often assumed that changes in teaching can be facilitated through reflective practices such as teacher self-assessment. Does self-assessment in fact help teachers develop new conceptual structures in the context of integrated science? We examine this assumption in the research reported in this paper. In the German PING project—an integrated science project for middle schools—teacher in-service education was based on collaborative workshops in which a group of 22 teachers from different types of schools used teaching materials for eight integrated topics for their lesson planning and conducting units over a period of 30 months. During this time concept maps, interviews and questionnaires were used as means to promote teacher self-assessment. We find that this kind of self-assessment in a collaborative framework was a useful basis for helping science teachers develop integrated conceptual structures and we suggest that in-service courses might use self-assessment for reflection on conceptual content knowledge as a basis for supporting integrated science teaching.  相似文献   

15.
In this paper, we characterize the inquiry practices of four elementary school teachers by means of a pedagogical framework. Our study revealed core components of inquiry found in theoretically-driven models as well as practices that were regarded as integral to the success of day-to-day science teaching in Singapore. This approach towards describing actual science inquiry practices—a surprisingly neglected area—uncovered nuances in teacher instructions that can impact inquiry-based lessons as well as contribute to a practice-oriented perspective of science teaching. In particular, we found that these teachers attached importance to (a) preparing students for investigations, both cognitively and procedurally; (b) iterating pedagogical components where helping students understand and construct concepts did not follow a planned linear path but involved continuous monitoring of learning; and (c) synthesizing concepts in a consolidation phase. Our findings underscore the dialectical relationship between practice-oriented knowledge and theoretical conceptions of teaching/learning thereby helping educators better appreciate how teachers adapt inquiry science for different contexts.  相似文献   

16.
A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.  相似文献   

17.
Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students’ perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.  相似文献   

18.
Background: This study investigates the role of figures of speech in the process of conceptual change in the physics classroom. Purpose: Its objectives are to examine what teachers and students perceive to be the advantages in using figures of speech in teaching physics concepts, what they perceive to be the challenges in using them, and how teachers use these in their classrooms to minimize the challenges faced. Sample We chose a purposive sample of 95 students and nine teachers of physics, in four schools in Lebanon. Design and methods: A mixed-method approach was used. Interviews were conducted with physics teachers; questionnaires were distributed to students, and non-participant classroom observations were carried out. Results: Teachers viewed figures of speech as a tool that helps them transmit abstract physics concepts to students in a simpler and concrete way. Questionnaires and non-participant observations revealed several examples of figures of speech used and the positive responses of students towards them. Conclusions: The study suggests several ways to overcome the drawbacks. This study highlights the urgent need for all stakeholders to work collaboratively to include figures of speech in the curriculum to enhance the process of conceptual change in the physics classroom.  相似文献   

19.
One way for teachers to develop their professional knowledge, which also focuses on specific science content and the ways students learn, is through being involved in researching their own practice. The aim of this study was to examine how science teachers changed (or not) their professional knowledge of teaching after inquiring into their own teaching in learning studies. The data used in this article consisted of interviews and video-recorded lessons from the six teachers before the project (PCK pre-test) and after the project (PCK post-test), allowing an analysis of if and if then how the teachers changed their teaching practice. Hence, this study responds to the urgent call to focus direct attention on the practice of science teaching. When looking at the individual teachers, it was possible to discern similarities in the ways they have changed their teaching in lesson 2 compared to lesson 1, changes that can be described as: changes in how the object of learning was defined and focused, changes in how the examples that were presented to the students were chosen and changes in how the lessons were structured which in turn influenced the meaning of the concepts that were dealt with. As such, issues for enhancing teachers’ professional learning were unpacked in ways that began to demonstrate, and offer insights into, the extent of their PCK development over time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号