首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we explore oral and written work (plays and rap songs) of students in a sixth‐grade all African‐American urban science class to reveal ways affective and social aspects are intertwined with students' cognition. We interpret students' work in terms of the meeting of various genres brought by the students and teachers to the classroom. Students bring youth genres, classroom genres that they have constructed from previous schooling, and perhaps their own science genres. Teachers bring their favored classroom and science genres. We show how students' affective reactions were an integral part of their constructed scientific knowledge. Their knowledge building emerged as a social process involving a range of transactions among students and between students and teacher, some transactions being relatively smooth and others having more friction. Along with their developing science genre, students portrayed elements of classroom genres that did not exist in the classroom genre that the teacher sought to bring to the class. Students' work offered us a glimpse of students' interpretations of gender dynamics in their classrooms. Gender also was related to the particular ways that students in that class included disagreement in their developing science genre. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 579–605, 2002  相似文献   

2.
Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms.  相似文献   

3.
This study explores the process of teacher scaffolding student engagement in epistemic tools from the critical sensemaking perspective. Epistemic tools are contextual artifacts manipulated to investigate and evaluate ideas to construct knowledge within the constraints of a disciplines' representational means. The main sources of our data are ~50 min-long semistructured, responsive interviews with the 14 secondary school science teachers who participated in our professional learning environment (PLE) and implemented the activities from the PLE in their classrooms. We utilized the tools of discourse analysis to explore teacher sensemaking while they learned to teach science with epistemic tools. We then looked at intertextualities of meaning across multiple sets of data such as students' artifacts, pre/postsurveys, audio and video recordings of the workshops, and teachers' written implementation feedback forms. As a result, we recognized a pattern across different classrooms. Teachers would begin with a contextualized goal, and use a pedagogical strategy to scaffold their students as they worked to achieve that goal. Then, all teachers reported they faced some sort of ambiguity (such as grappling with failure, different levels of students). When faced with an ambiguity, teachers would then revise either their contextualized goal or their initial pedagogical strategy to help their students to reach their goals. Finally, we utilized constant-comparative analysis to identify themes for teachers' contextualized goals. Four major themes emerged, including communicating connections to core ideas of science, making sense of how science works, assessing students' learning process outcomes, and fostering students' epistemic agency. The findings of the study have implications for future research and professional development activities on the use of epistemic practices and tools in classrooms with unique contextual characteristics.  相似文献   

4.
This article reports on analyses of the instructional practices of six middle- and high-school science teachers in the United States who participated in a research-practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three-dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research-practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three-dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as activity-based teaching, in which students completed investigations and hands-on activities with few opportunities for sensemaking discussions or three-dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated with scientific sensemaking and cognitive apprenticeship. We conclude with a discussion of implications for research-practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards-based success.  相似文献   

5.
This article explores a small group of students' observations on their learning as they come to the end of an A-level Politics course. It draws on the insights of Vygotsky and other theorists influenced by him, such as Lave, Wenger, Rogoff and Engestro¨m, who have made important contributions to study of the social and participatory nature of learning, particularly, but not exclusively, in contexts outside the school environment. These ideas illuminate the 'communities of practice' found within educational institutions. The students' perspectives reveal perceptions about the learning process and provide a sense of what they have valued during this phase of their studies. Whilst education in formal environments may be criticised for the constraints on learning, classrooms may promote activity that encourages learners to identify their problems with existing knowledge, to question and speculate in ways that transform understanding. Collaborative practices have enabled students to enhance understanding of subject knowledge and to develop skills.  相似文献   

6.
The implementation of science reform must be viewed as a systems-level problem and not just focus on resources for teachers and students. High-capacity instructional leadership is essential for supporting classroom science instruction. Recent reform efforts include a shift from learning about science facts to figuring out scientific phenomena in which students use science practices as they build and apply disciplinary core ideas. We report findings from a research study on professional development (PD) to support instructional leaders' learning about the science practices. After participating in the PD, the instructional leaders' familiarity with and leadership content knowledge of the science practices significantly improved. Initially, principals used their understandings from other disciplines and content neutral visions of classrooms to make sense of science instruction. For example, they initially used their understandings of models and argument from ELA and math to make sense of science classroom instruction. Furthermore, some principals focused on content neutral strategies, like a clear objective. Over the course of the PD workshops, principals took up the language of the science practices in more nuanced and sophisticated ways. Principals' use of the language of the science practices became more frequent and shifted from identifying or defining them to considering quality and implementation in science classrooms. As we design tools to support science, we need to consider instructional leaders as important stakeholders and develop resources to specifically meet their needs. If the science feels too unfamiliar or intimidating, principals may avoid or reframe science reform efforts. Consequently, it is important to leverage instructional leaders' resources from other disciplines and content neutral strategies as bridges for building understanding in science. We argue that the science practices are one potential lever to engage in this work and shift instructional leaders' understandings of science instruction.  相似文献   

7.
The purpose of this research was to demonstrate an empirical relationship between classroom community and students' achievement goals in higher education, and to offer a possible explanation for differences in this relationship for cooperative and non-cooperative classrooms. Structural equation modeling techniques revealed that students' perceptions of interactive learning significantly mediated the relationship between students' goals and their sense of classroom community, but only for classrooms that used cooperative learning techniques. In the traditional lecture-style course surveyed, students' feelings of classroom community and interactive learning were significantly lower than in cooperative learning classrooms. Finally, while mastery goals were significantly higher for cooperative learning students, performance-approach goals were significantly higher for traditional lecture students.  相似文献   

8.
Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.  相似文献   

9.
This investigation examined 10th‐grade biology students' decisions to enroll in elective science courses, and explored certain attitudinal perceptions of students that may be related to such decisions. The student science perceptions were focused on student and classroom attitudes in the context of differing learning cycle classrooms (high paradigmatic/high inquiry, and low paradigmatic/low inquiry). The study also examined possible differences in enrollment decisions/intentions and attitudinal perceptions among males and females in these course contexts. The specific purposes were to: (a) explore possible differences in students' decisions, and in male and female students' decisions to enroll in elective science courses in high versus low paradigmatic learning cycle classrooms; (b) describe patterns and examine possible differences in male and female students' attitudinal perceptions of science in the two course contexts; (c) investigate possible differences in students' science perceptions according to their decisions to enroll in elective science courses, participation in high versus low paradigmatic learning cycle classrooms, and the interaction between these two variables; and (d) examine students' explanations of their decisions to enroll or not enroll in elective science courses. Questionnaire and observation data were collected from 119 students in the classrooms of six learning cycle biology teachers. Results indicated that in classrooms where teachers most closely adhered to the ideal learning cycle, students had more positive attitudes than those in classrooms where teachers deviated from the ideal model. Significantly more females in high paradigmatic learning cycle classrooms planned to continue taking science course work compared with females in low paradigmatic learning cycle classrooms. Male students in low paradigmatic learning cycle classrooms had more negative perceptions of science compared with males in high paradigmatic classrooms, and in some cases, with all female students. It appears that using the model as it was originally designed may lead to more positive attitudes and persistence in science among students. Implications include the need for science educators to help teachers gain more thorough understanding of the learning cycle and its theoretical underpinnings so they may better implement this procedure in classroom teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 1029–1062, 2001  相似文献   

10.
The Next Generation Science Standards (NGSS) strives to shift science learning from the teacher as a single cognitive agent, to a classroom community in which participants are working together in directing the classroom's communal knowledge to figure out questions about how phenomena occur, and building, testing, and refining their ideas to address those questions. To achieve this type of classroom environment, teachers should attend to students' knowledge and ideas and pay attention to how students are located within teacher-led interactions, such as being positioned as active discussants or designated listeners. In this study, we explore if and how this is occurring in the NGSS era. We used a naturalistic inquiry to explore how an experienced first-grade teacher used a new NGSS-aligned unit that called for students to use the science and engineering practices (SEP) to build content knowledge. We used a macro-analytic lens to answer the research question “how are class discussions shaped to address the SEP”? We used a micro-analytic lens to answer the research question “how are students positioned during these science discussions in this classroom?” Evidence suggests that the teachers' whole class discussions incorporated and involved the SEP which were specified in the unit lessons for content learning. However, on a micro-analytic level, we found that few students were positioned as active discussants. The teacher heavily relied on those students who could provide succinct and clearly relevant answers while positioning the remainder of the students as silent spectators. Implications from this research suggest that not only new NGSS curriculum materials need to focus on what students should know and do but they also need to address heuristics for teachers that show them how to position all of their students as active doers of science so all students have opportunities to build deeper, core science knowledge.  相似文献   

11.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

12.
Our short-term longitudinal study explored undergraduate students' experiences with performing authentic science practices in the classroom in relation to their science achievement and course grades. In addition, classroom experiences (felt recognition as a scientist and perceived classroom climate) and changes over a 10-week academic term in STEM (science, technology, engineering, and mathematics) identity and motivation were tested as mediators. The sample comprised 1,079 undergraduate students from introductory biology classrooms (65.4% women, 37.6% Asian, 30.2% White, 25.1% Latinx). Using structural equation modeling (SEM), our hypothesized model was confirmed while controlling for class size and GPA. Performing science practices (e.g., hypothesizing or explaining results) positively predicted students' felt recognition as a scientist; and felt recognition positively predicted perceived classroom climate. In turn, felt recognition and classroom climate predicted increases over time in students' STEM motivation (expectancy-value beliefs), STEM identity, and STEM career aspirations. Finally, these factors predicted students' course grade. Both recognition as a scientist and positive classroom climate were more strongly related to outcomes among underrepresented minority (URM) students. Findings have implications for why large-format courses that emphasize opportunities for students to learn science practices are related to positive STEM outcomes, as well as why they may prove especially helpful for URM students. Practical implications include the importance of recognition as a scientist from professors, teaching assistants, and classmates in addition to curriculum that engages students in the authentic practices of science.  相似文献   

13.
Learning environment,motivation, and achievement in high school science   总被引:1,自引:0,他引:1  
In a study of the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth‐grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast‐paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum‐linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students' self‐reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 347–368, 2003  相似文献   

14.
Two studies of a new science programme called WEE Science were conducted in two fifth-grade classrooms. The studies lasted for seven days in one of the classrooms and nine days in the other. At the beginning of the programme the students chose a science trade book from among the many that were selected and brought to the classroom. The students then formed groups based on the topics of the books and asked questions (Wondering) about the content. After choosing one of the 'wonderments' to pursue further, the students formed and implemented a plan for investigating (Exploring). In each classroom, each student explored, working in cooperating groups of two or more. The students then explained (Explaining) to a group of their peers what they had wondered and what and how they had explored. The students' wonderments, activities, plans, and explanations were recorded in a science notebook that had been designed for that purpose. In addition, the classrooms were videotaped while WEE Science was in progress. While the studies were successful in that most students eagerly participated in all phases of the project, some problems were encountered which created another round of wondering for the researchers. Some of these were: evaluating students' work, responding to science misconceptions of students, teaching some students to record observations in their notebooks, deciding where WEE Science would fit best in the curriculum, and anticipating its reception in the science education community.  相似文献   

15.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

16.
This study demonstrates the potential for collaborative research among participants in local settings to effect positive change in urban settings characterized by diversity. It describes an interpretive case study of a racially, ethnically, and socioeconomically diverse eighth grade science classroom in an urban magnet school in order to explore why some of the students did not achieve at high levels and identify with school science although they were both interested in and knowledgeable about science. The results of this study indicated that structural issues such as the school's selection process, the discourses perpetuated by teachers, administrators, and peers regarding “who belongs” at the school, and negative stereotype threat posed obstacles for students by highlighting rather than mitigating the inequalities in students' educational backgrounds. We explore how a methodology based on the use of cogenerative dialogues provided some guidance to teachers wishing to alter structures in their classrooms to be more conducive to all of their students developing identities associated with school science. Based on the data analysis, we also argue that a perspective on classrooms as communities of practice in which learning is socially situated rather than as forums for competitive displays, and a view of students as valued contributors rather than as recipients of knowledge, could address some of the obstacles. Recommendations include a reduced emphasis on standardized tasks and hierarchies, soliciting unique student contributions, and encouraging learning through peripheral participation, thereby enabling students to earn social capital in the classroom. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1209–1228, 2010  相似文献   

17.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

18.
We examined curricular orientations that graduate students in science and mathematics fields held as they experienced urban high‐school science and mathematics classrooms. We analyzed how these educators (called Fellows) saw themselves, students, teachers, schools, education, and the sense they made of mathematics and science education in urban, challenging settings in the light of experiences they brought with them into the project and experiences they designed and engaged in as they worked in classrooms for 1 or 2 years. We used Schubert's (Schubert (1997) Curriculum: Perspective, paradigm, and possibility. New Jersey: Prentice‐Hall, Inc.) four curricular orientations—intellectual traditionalism, social behaviorism, experientialism, and critical reconstructionism—to analyze the Fellows' journals, and to explore ways in which the positions they portrayed relative to curriculum, instruction, assessment, social justice, discipline, student involvement, teacher's role, subject‐matter nature, etc., shaped and were shaped by who they were before and during their classroom work. Our qualitative analysis revealed various relationships including: experientialists engaged in more open‐ended projects, relevant to students, with explicit connections to everyday‐life experiences; social behaviorists paid more attention to designing “good” labs and activities that taught students appropriate content, led them through various steps, and modeled good science and mathematics; and critical reconstructionists hyped up student knowledge and awareness of science issues that affect students' lives, such as asthma and HIV epidemic. Categorizing orientations and identifying relationships between experiences, actions, and orientations may help us articulate and explicate goals, priorities, and commitments that we have, or ought to have, when we work in urban classrooms. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 46: 1–26, 2009  相似文献   

19.
This investigation explores how underrepresented urban students made sense of their first experience with high school science. The study sought to identify how students' assimilation into the science classroom reflected their interpretation of science itself in relation to their academic identities. The primary objectives were to examine students' responses to the epistemic, behavioral, and discursive norms of the science classroom. At the completion of the academic year, 29 students were interviewed regarding their experiences in a ninth and tenth‐grade life science course. The results indicate that students experienced relative ease in appropriating the epistemic and cultural behaviors of science, whereas they expressed a great deal of difficulty in appropriating the discursive practices of science. The implications of these findings reflect the broader need to place greater emphasis on the relationship between students' identity and their scientific literacy development. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 43: 96–126, 2006  相似文献   

20.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号