首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Objective: Little is known about cognition’s effect on jump-landing movement patterns. Design: Participants completed three baseline cognitive tasks. Then, participants performed three jump-landing trials per condition (dual-task trials (DT)): Stroop Color Word test (SCWT), Symbol Digits Modalities test (SDMT), Brooks Visuospatial task (BVT), and no concurrent cognitive task (single-task). Main Outcome Measures: Total Landing Error Scoring System (LESS) scores were used to evaluate movement patterns. Participant’s reaction time (RT) for the jump-landing task was recorded. Results: LESS scores were not different between conditions (F3, 17 = 1.77, p = 0.16). RT was different between DT-SCWT and single-task (difference = ?0.107 sec, SD = 0.095) and DT-SDMT and single-task (difference = ?0.164 sec, SD = 0.245). Additionally, correctness on the BVT (t19 = 2.57, = 0.019) and SDMT (t19 = 2.93, = 0.009) decreased significantly during the dual-task condition relative to baseline task scores. Conclusion: Individuals slowed their RT and were less accurate on the cognitive task during a dual-task condition to create an appropriate jump-landing movement.  相似文献   

2.
ABSTRACT

Whether the acute coordinative exercise could affect the inhibitory control and food-cue related attention in obese adolescents remains understudied. Therefore, this study used the Stroop test and the food-cue related Stroop test to explore the impacts of 20 min of acute coordinative exercise on the cognitive tests involving inhibitory control and attentional bias towards food-cue related stimuli, respectively, in obese adolescents. Thirty-eight obese adolescents (mean age = 14.63 ± 0.69 years) were equally divided into exercise and control groups. The cognitive tests (i.e., the Stroop test and the food-cue related Stroop test) and hunger scores were conducted and assessed before and after an intervention. The exercise group had significantly larger negative pre-post response time difference in the congruent (?1.04 ± 0.29 ms) and incongruent (?5.76 ± 1.66 ms) conditions of the Stroop test than the control group (ps < 0.01), and a smaller post-interference (1.13 ± 0.14) than the pre-interference (1.31 ± 0.14, p = 0.04). Moreover, a significantly larger negative pre-post response time difference on the food-cue related Stroop test was observed in the exercise group (?4.42 ± 7.20 ms) than the control group (1.76 ± 8.37 ms, p = 0.02). Collectively, an acute coordinative exercise session could induce superior inhibitory control and less attentional bias towards food-cue related stimuli in obese adolescents.  相似文献   

3.
Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P < .001, η2 = .23) and reduced MOT (F = 86.3, P < .001, η2 = .32) compared to the control group. A mixed-model ANCOVA revealed significant differences in DT performance for the balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (?8.28% versus ?1.34% for MOT and ?33.13% versus ?12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.  相似文献   

4.
Abstract

The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.  相似文献   

5.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

6.
Abstract

The aim of the present study was to determine whether changing stance width would result in a corresponding change in postural and/or pistol stability. Twelve national-standard male air pistol shooters performed 10 shots each at five stance widths (30 cm, 45 cm, 60 cm, 75 cm, and 90 cm). Postural stability was determined by measuring centre-of-pressure changes with a dual force-platform system. Shooting mechanics measures were determined by a NOPTEL ST-2000 optoelectronic training system. Medial-lateral centre-of-pressure excursion (F 4,44 = 7.17, P < 0.001, effect size = 0.99) and speed (F 4,44 = 77.03, P < 0.001, effect size = 3.88) were reduced as stance width decreased. Centre of gravity fine (the percentage of time held within an area the size of the ten-ring) improved during narrower stance widths (F 4,32 = 12.49, P < 0.001, effect size = 0.71). Our findings suggest that stance width affects postural and pistol stability in national-standard air pistol athletes. Moreover, the current method of suggesting a wider stance to improve shooting performance should be reconsidered and perhaps air-pistol shooters should use a 30-cm stance width to improve postural stability and shooting performance.  相似文献   

7.
The aim of this study was to compare the musculature activity and kinematics of knee and hip joints during front and back squat with maximal loading. Two-dimensional kinematical data were collected and electromyographic activities of vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, gluteus maximus and erector spinae were measured while participants (n = 12, 21.2 ± 1.9 years old) were completing front and back squat exercises with maximum loading. Paired sample t-test was used for comparisons between two techniques. Results showed that the electromyographic activity of vastus medialis was found to be greater in the front squat compared to the back squat during the ascending phase (P < 0.05, d = 0.62; 95% CI, ?15.0/?4.17) and the whole manoeuvre (P < 0.05, d = 0.41; 95% CI, ?12.8/?0.43), while semitendinosus (P < 0.05, d = ?0.79; 95% CI, 0.62/20.59) electromyographic activity was greater in the back squat during the ascending phase. Compared to the front squat version, back squat exhibited significantly greater trunk lean, with no differences occurring in the knee joint kinematics throughout the movement. Results may suggest that the front squat may be preferred to the back squat for knee extensor development and for preventing possible lumbar injuries during maximum loading.  相似文献   

8.
ABSTRACT

The effectiveness of 8-week force-velocity optimised training was assessed in highly trained professional rugby league athletes. Players (age 24 ± 3 years; body mass 94.9 ± 21.6 kg; height 181.3 ± 6.0 cm) were strength-matched and assigned to a force-velocity optimised group (OP; n = 15) or a general strength-power group (GP; n = 14). Tests included 10-m, 20-m sprints, 3 repetition-maximum squat and squat jumps over five load conditions to ascertain vertical force-velocity relationship. ANCOVA revealed there was a group effect for force-velocity deficit (P < 0.001), with the OP two-fold greater than the GP group (OP pre: 51.13 ± 31.42%, post: 62.26 ± 31.45%, GP pre: 33.00 ± 19.60%, post: 31.14 ± 31.45%, P < 0.001). There were further group effects for 3RM squat (OP pre: 151.17 ± 22.95 kg, post: 162.17 ± 24.16 kg, GP pre: 156.43 ± 25.07 kg, post: 163.39 ± 25.39 kg, P < 0.001), peak power (OP pre: 3195 ± 949 W, post: 3552 ± 1033 W, GP pre: 3468 ± 911 W, post: 3591 ± 936 W, P < 0.001), and SJ (OP pre: 39.79 ± 7.80 cm, post: 42.69 ± 7.83 cm, GP pre: 40.44 ± 6.23 cm, post: 41.14 ± 5.66 cm, P < 0.001). Prescribing F-V deficit training is superior for improving physical performance within highly trained RL players.  相似文献   

9.
Abstract

We investigated balance in 33 competitive dancers (17 females, 16 males) and 22 controls (17 females, 5 males) (age 16–27 years) on a force plate in two conditions: single task (quiet stance) and dual task (with a concurrent mental task). Balance was evaluated using centre-of-pressure shift (sway) variability, mean speed, frequency, and sample entropy. The effect of the dual task in the medio-lateral plane was comparable in both groups, decreasing sway variability (P < 0.05) and increasing mean speed (P < 0.001), frequency, and sample entropy (P < 0.001), showing that the participants effectively increased the level of automaticity. In the antero-posterior plane, the dual task also increased sway frequency and sample entropy (P < 0.01) in dancers without affecting their standing performance. In contrast, postural control in non-dancers was vulnerable to reduced cognitive investment, which adversely interfered with baseline performance. There were very high correlations between sway sample entropy and frequency in each group, plane, and task (r = 0.92–0.98, P < 0.001), indicating that both parameters may measure the same characteristic of postural control and that higher sway frequency may play an important role in protecting stability in dual tasking. The postural control of dancers and non-dancers appears to be similar, although dancing seems to facilitate the increased level of automatic control in the antero-posterior plane.  相似文献   

10.
Abstract

Insufficient hip neuromuscular control may contribute to non-contact sport injuries. However, the current evaluative test of hip neuromuscular control, the single-leg squat, requires hip abductor muscle strength to complete. The purpose of this study was to develop the hip control test (HCT) and determine the test’s reliability and construct validity. Nineteen healthy adults visited the laboratory twice. The HCT is a 10-s test of reciprocal toe-tapping accuracy. Both automated and manual HCT ratings were recorded simultaneously during each visit. Additionally, eccentric hip abductor torque was measured. HCT reliability was assessed with intra-class correlation coefficients (ICC). Agreement between automated and manual ratings was determined with Bland–Altman plots. Construct validity was established if HCT performance significantly decreased with a secondary cognitive task (p < 0.05). Bivariate regression determined the relationship between HCT performance and eccentric hip abductor torque. Automated and manual HCT ratings both had moderate reliability (ICC = 0.72) and yielded similar results (limits of agreement = ?1 to 2 taps). The HCT had construct validity (p = 0.001), and no correlation with hip abductor muscle strength (r = 0.213). Thus, the HCT is a reliable and valid test. The HCT is simple to administer and measures hip neuromuscular control separately from strength.  相似文献   

11.
Abstract

We assessed the attentional demands of drawing and passing in rugby league players and investigated the effects of single-task and dual-task training on the acquisition, retention, and transfer of skill in these athletes. In Study 1, high-skilled and lesser-skilled rugby league players performed a standardized 2-on-1 drill under single-task (primary skill in isolation) and dual-task (primary skill while performing a secondary verbal tone recognition task) conditions. No differences were detected in primary task performance between groups, although the performance of the high-skilled players was more resistant to skill decrement under dual-task conditions. In Study 2, high-performance rugby league players were randomly allocated to either a single-task or dual-task training group. Each group underwent 8 weeks of training between the pre- and post-test sessions. While the mean improvement for draw and pass proficiency under dual-task conditions in the dual-task training group was greater than in the single-task training group (10.0% vs. 2.3%), the differences, while providing a moderate effect size (d = 0.57), were not statistically significant. These results suggest that the attentional demands of drawing and passing are reduced in high-skilled rugby league players compared with their lesser-skilled counterparts. In addition, compared with single-task training, dual-task training appears to improve the ability to perform dual-task draw and pass tasks (possibly through an improvement in time-sharing skills). Further studies are required to verify the efficacy of dual-task training as a training stimulus.  相似文献   

12.
This investigation assessed whether prior heavy resistance exercise would improve the repeated sprint performance of 16 trained youth soccer players (Age 17.05 ± 0.65 years; height 182.6 ± 8.9 cm; body mass 77.8 ± 8.2 kg). In session 1, individual 1 repetition max was measured utilising a squat movement. In sessions 2 and 3, participants performed a running-based repeated anaerobic sprint test with and without prior heavy resistance exercise of 91% of their 1 repetition max. Times were recorded for each of the 6 sprints performed in the repeated sprint test and summed to provide total time. T-tests compared the two exercise conditions via differences in corresponding sprint times and total time. Analysis revealed significantly reduced total time with use of heavy resistance exercise (33.48 (±1.27) vs. 33.59 (±1.27); P = 0.01). Sprints 1 (P = 0.05) and 2 (P = 0.02) were also faster in the heavy resistance exercise condition (5.09 (±0.16) vs. 5.11 (±0.16) and 5.36 (±0.24) vs. 5.45 (±0.26) seconds respectively) although no other differences were shown. Findings demonstrate improved sprint times of trained adolescent soccer players after heavy resistance exercise although benefits appear not as sustained as in adult participants.  相似文献   

13.
Abstract

In this study, we compared the effectiveness of ratio and allometric scaling for normalizing power and strength in elite male rugby union players. Rugby union forwards (n = 18) and backs (n = 20) were assessed for squat jump and bench throw peak power, and box squat and bench press one-repetition maximum strength. The performance data for the forwards and backs were compared using ratio (P/BM) and allometric scaling (P/BMb ), where P represents performance, BM is body mass in kilograms, and b is a power exponent. A proposed allometric exponent (0.67) and exponents (±95% confidence intervals) derived for the box squat (0.33 ± 0.31), bench press (0.45 ± 0.30), bench throw (0.46 ± 0.36), and squat jump (0.64 ± 0.31) exercises were used. In general, the absolute expression of power and strength was superior for the heavier forwards, but after ratio scaling these performance measures then favoured the lighter backs. There were no performance differences between the forwards and backs after allometric scaling using either the proposed or the derived exponents. Thus, allometric scaling may provide a more effective method for normalizing power and strength in elite athletes when body size is a confounding variable.  相似文献   

14.
Abstract

In this study, we examined the effect of 96–125 h of competitive exercise on cognitive and physical performance. Cognitive performance was assessed using the Stroop test (n = 9) before, during, and after the 2003 Southern Traverse adventure race. Strength (MVC) and strength endurance (time to failure at 70% current MVC) of the knee extensor and elbow flexor muscles were assessed before and after racing. Changes in vertical jump (n = 24) and 30-s Wingate performance (n = 27) were assessed in a different group of athletes. Complex response times were affected by the race (16% slower), although not significantly so (P = 0.18), and were dependent on exercise intensity (less so at 50% peak power output after racing). Reduction of strength (P < 0.05) of the legs (17%) and arms (11%) was equivalent (P = 0.17). Reductions in strength endurance were inconsistent (legs 18%, P = 0.09; arms 13%, P = 0.40), but were equivalent between limbs (P = 0.80). Similar reductions were observed in jump height (?8 ± 9%, P < 0.01) and Wingate peak power (?7 ± 15%, P = 0.04), mean power (?7 ± 11%, P < 0.01), and end power (?10 ± 11%, P < 0.01). We concluded that: moderate-intensity exercise may help complex decision making during sustained stress; functional performance was modestly impacted, and the upper and lower limbs were affected similarly despite being used disproportionately.  相似文献   

15.
This study investigated the effects of aerobic exercise, fluid loss and rehydration on cognitive performance in well-trained athletes. Ten endurance-trained males (25 ± 5 years; 175 ± 5 cm; 70.35 ± 5.46 kg; VO2max, 62.95 ± 7.20 ml · kg.min?1) lost ~2.5 ± 0.6% body mass via continuous cycling exercise at ~65% peak sustainable power output (60 min duration) before consuming different beverages (Water = W1 and W2, Sustagen Sport = SS, Powerade = PD) and food ad libitum on four separate occasions. Cognitive function using a four-choice reaction time task (CRT), body mass, fluid consumption volumes, urine samples and subjective ratings (alertness, concentration, energy) were obtained before and after exercise, and hourly during recovery (for 4 h). CRT latency was significantly reduced immediately after exercise compared to pre-exercise measures for all trials (W1 = ?16 ± 18 ms, W2 = ?22 ± 21 ms, PD = ?22 ± 22 ms, SS = ?19 ± 26 ms). However, this effect was short-lived with subsequent measures not different from pre-exercise values. No difference in CRT accuracy was observed at any time across all trials. Subjective ratings were not different at any time across all trials. Aerobic exercise, hypohydration or an interaction between these two may provide a small cognitive performance benefit. However, these effects are temporary and confined to the immediate post-exercise period.  相似文献   

16.
Ankle sprain is a common injury in volleyball. Poor stabilometric performance (SP) is associated with high risks of sustaining ankle sprain. Balance training can improve SP and reduce ankle sprain, but no research has studied the effects of detraining on SP in highly trained athletes. The purpose of this study was to determine the effects of one-month postseason break on SP in female volleyball players. Eleven NCAA female volleyball players participated in two eye-closed single-leg stance tests before and after a one-month postseason break. Stance time, center of pressure (COP) area, COP standard deviation, and COP mean velocity were assessed during the tests. During the postseason break, subjects conducted self-selected exercise and the average training duration was 87% lower compared to the competition season. Subjects demonstrated significant increases in anterioposterior (A/P) COP standard deviation (1.6 ± 0.4 vs. 1.8 ± 0.4 cm, p = 0.05), mediolateral (M/L) COP velocity (6.5 ± 1.5 vs. 7.1 ± 1.3 cm/s, p = 0.05), and overall COP velocity (10.1 ± 2.0 vs. 11.6 ± 1.9 cm/s, p = 0.02) after postseason break. SP decreased in highly trained female volleyball players after one-month postseason break. The decrease in SP indicated a possible increased risk for ankle sprain injury.  相似文献   

17.
We examined the influence of caffeine supplementation on cognitive performance and perceptual responses in female team-game players taking low-dose monophasic oral contraceptives of the same hormonal composition. Ten females (24 ± 4 years; 59.7 ± 3.5 kg body mass; 2–6 training sessions per week) took part in a randomised, double-blind, placebo-controlled crossover-design trial. A 90-min intermittent treadmill-running protocol was completed 60 min following ingestion of a capsule containing either 6 mg ? kg?1 anhydrous caffeine or artificial sweetener (placebo). Perceptual responses (ratings of perceived exertion (RPE), feeling scale (FS), felt arousal scale (FAS)), mood (profile of mood states (POMS)) and cognitive performance (Stroop test, choice reaction time (CRT)) were completed before, during and after the exercise protocol, as well as after ~12 h post exercise. Caffeine ingestion significantly enhanced the ratings of pleasure (= 0.008) and arousal (= 0.002) during the exercise protocol, as well as increased vigour (POMS; = 0.007), while there was a tendency for reduced fatigue (POMS; = 0.068). Caffeine ingestion showed a tendency to decrease RPE (= 0.068) and improve reaction times in the Stroop (= 0.072) and CRT (= 0.087) tests. Caffeine supplementation showed a positive effect on perceptual parameters by increasing vigour and a tendency to decrease fatigue during intermittent running activity in female games players taking low-dose monophasic oral contraceptive steroids (OCS).  相似文献   

18.
Abstract

There is little published data in relation to the effects of caffeine upon cycling performance, speed and power in trained cyclists, especially during cycling of ~60 s duration. To address this, eight trained cyclists performed a 1 km time-trial on an electronically braked cycle ergometer under three conditions: after ingestion of 5 mg · kg?1 caffeine, after ingestion of a placebo, or a control condition. The three time-trials were performed in a randomized order and performance time, mean speed, mean power and peak power were determined. Caffeine ingestion resulted in improved performance time (caffeine vs. placebo vs. control: 71.1 ± 2.0 vs. 73.4 ± 2.3 vs. 73.3 ± 2.7 s; P = 0.02; mean ± s). This change represented a 3.1% (95% confidence interval: 0.7–5.6) improvement compared with the placebo condition. Mean speed was also higher in the caffeine than placebo and control conditions (caffeine vs. placebo vs. control: 50.7 ± 1.4 vs. 49.1 ± 1.5 vs. 49.2 ± 1.7 km · h?1; P = 0.0005). Mean power increased after caffeine ingestion (caffeine vs. placebo vs. control: 523 ± 43 vs. 505 ± 46 vs. 504 ± 38 W; P = 0.007). Peak power also increased from 864 ± 107 W (placebo) and 830 ± 87 W (control) to 940 ± 83 W after caffeine ingestion (P = 0.027). These results provide support for previous research that found improved performance after caffeine ingestion during short-duration high-intensity exercise. The magnitude of the improvements observed in our study could be due to our use of sport-specific ergometry, a tablet form and trained participants.  相似文献   

19.
The purpose of this study was to assess how cognitive and physical performance are affected during a prolonged, fatigue-inducing cricket-batting simulation. Fifteen amateur batters from three Eastern Cape schools in South Africa were recruited (mean ± SD: age 17 ± 0.92 years; stature 1.75 ± 0.07 m; body mass 78.3 ± 13.2 kg). Participants completed a 6-stage, 30-over batting simulation (BATEX©). During the protocol, there were five periods of cognitive assessment (CogState brief test battery, Melbourne, Australia). The primary outcome measures from each cognitive task were speed and accuracy/error rates. Physiological (heart rate) and physical (sprint times) responses were also recorded. Sprint times deteriorated (= 0.84; < 0.01) while physiological responses increased (= 0.91; < 0.01) as batting duration increased, with longest times and highest responses occurring in the final stage. Prolonged batting had a large effect on executive task performance (= 0.85; = 0.03), and moderate effects on visual attention and vigilance (d = 0.56; P = 0.21) and attention and working memory (d = 0.61; P = 0.11), reducing task performance after 30 overs. Therefore, prolonged batting with repeated shuttle running fatigues amateur batters and adversely affects higher-order cognitive function. This will affect decision-making, response selection, response execution and other batting-related executive processes. We recommend that training should incorporate greater proportions of centre-wicket batting with repeated, high-intensity shuttle running. This will improve batting-related skills and information processing when fatigued, making practice more representative of competition.  相似文献   

20.
To determine the effect of circadian rhythm on neuromuscular responses and kinematics related to physical tennis performance, after a standardised warm-up, 13 highly competitive male tennis players were tested twice for serve velocity/accuracy (SVA), countermovement vertical jump (CMJ), isometric handgrip strength (IS), agility T-test (AGIL) and a 10-m sprint (10-m RUN). In a randomised, counter-balance order, tennis players underwent the test battery twice, either in the morning (i.e., AM; 9:00 h) and in the afternoon (i.e., PM; 16:30 h). Paired t-tests were used to analyse differences due to time-of-day in performance variables. Comparison of morning versus afternoon testing revealed that SVA (168.5 ± 6.5 vs. 175.2 ± 6.1 km · h?1; P = 0.003; effect size [ES] = 1.07), CMJ (32.2 ± 0.9 vs. 33.7 ± 1.1 cm; P = 0.018; ES = 1.46), AGIL (10.14 ± 0.1 vs. 9.91 ± 0.2 s; P = 0.007; ES = 1.23) and 10-m RUN time (1.74 ± 0.1 vs. 1.69 ± 0.1 s; P = 0.021; ES = 0.67) were significantly blunted during the morning testing. However, IS was not affected by time-of-day (P = 0.891). Thus, tennis performance may be reduced when competing in the morning in comparison to early evening. Therefore, coaches and tennis players should focus on schedule the SVA, power, speed and agility training sessions in the afternoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号