首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

2.
Landing with a low knee flexion angle after volleyball block jumps may be associated with an increased risk of anterior cruciate ligament (ACL) injury. The aim of the present study was to identify the types of volleyball landings after blocks where the knee flexion angle is found to be under a critical knee flexion angle value of 30° at the instant of the first peak of the ground reaction force (GRF). Synchronized kinematic and kinetic data were collected for each trial. T-tests were used to determine if each knee flexion angle at the instant of the peak GRF was significantly different from the critical value of 30°. A repeated measures ANOVA was used to compare knee flexion angle, time to first peak and the magnitude of the first peak of the resultant GRF and knee stiffness. Significantly lower knee flexion angles were found in the “go” landing (p?=?.01, ES?=?0.6) and the “reverse” landing (p?=?.02, ES?=?0.6) only. The results for knee flexion angle and GRF parameters indicated a significant difference between a “reverse” and “go” and other types of landings, except the “side stick” landing for GRF. The “reverse” and “go” landings may present a risk for ACL injury due to the single-leg landing of these activities that have an associated mediolateral movement.  相似文献   

3.
Abstract

The purpose of this study was to examine the effect of fatiguing exercise on sex-related differences in the function of hamstring and quadriceps muscles at several angular velocities and joint angles. Physically active participants (50 male: 28.7?±?4.5y, 1.82?±?0.07 m, 82.3?±?6.87?kg; 50 female: 27.0?±?5.8y, 1.61?±?0.08 m, 68.75?±?9.24?kg) carried out an isokinetic assessment to determine concentric and eccentric torques during knee extension and flexion actions at three different angular velocities (60/180/300°/s). The H/QFUNCT was calculated using peak torque (PT) values at 3 different joint-angle-specific (15°, 30° and 45° of knee flexion). A repeated measures analysis of variance (ANOVA) was used to compare within group results. Between group comparisons of sex-related differences were assessed by independent T-tests. Fatiguing exercise in males resulted in a decrease in H/QFUNCT ratios for each angle of knee flexion at both 60°/s and 300°/s angular velocities (p?<?0.05). In females, significant decreases in H/QFUNCT ratios were observed following fatiguing exercise for each angle of knee flexion and angular velocity (p?<?0.01). Significant differences in H/QFUNCT ratios following fatiguing exercise were evident between males and females at each joint angle and angular velocity (p?<?0.01). These findings indicate sex related differences in H/QFUNCT ratios following fatiguing exercise. Females have greater reductions in torque and H/QFUNCT ratios following fatigue than their male counterparts. This potentially exposes females to higher risks of injury, particularly when fatigued. Practitioners should attend to the imbalance in fatigue resistance of hamstring and quadriceps function, particularly in female athletes.  相似文献   

4.
The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis system (120 Hz) was used to record knee kinematics, and a force platform (600 Hz) was used to record ground reaction force during landing. The results showed a significant effect for level of opposition in peak normalized ground reaction force (p = .04), knee flexion at ground contact (p = .003), maximum knee flexion (p = .001), and knee flexion range of motion (p = .003). There was a significant effect for gender in maximum knee flexion (p = .01), knee flexion range of motion (p = .001), maximum knee valgus angle (p = .001), and knee valgus range of motion (p = .001). The changes in landing biomechanics as a result of opposition suggest future research on landing mechanics should examine opposed exercises, because opposition may significantly alter neuromuscular responses.  相似文献   

5.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

6.
ABSTRACT

The aim of this study was to assess the influence of different bike positions on the perception of fatigue, pain and comfort. Twenty cyclists underwent three tests that involved cycling for 45 min at their individual 50% peak aerobic power output while adopting different positions on the bike. Participants performed the cycling tests adopting three positions defined by two parameters (knee flexion angle [20°, 30°, 40°] and trunk flexion angle [35°, 45°, 55°]) in random order. Angles were measured using a 2D motion analysis system during cycling and applying Fonda’s correction factor. Perceptions of comfort, fatigue and pain were reported before the end of each test. The combination of 40° knee flexion and 35° trunk flexion was perceived as the most uncomfortable position. Moreover, greater knee flexion had a negative effect on trunk comfort, accompanied by greater levels of fatigue and pain perception in the anterior part of the thigh and knee. In conclusion, cyclists perceived the most comfortable position to be when the saddle height was within the recommended knee angle (30° calculated from the offset position or 40 ± 4.0° of absolute value). Upright trunk was found to be the most comfortable position for recreational cyclists, where aerodynamics is not so important. Cyclists’ bike perceptions should be taken into account when it comes to choosing the most beneficial position, since this can play a role in injury prevention and enhance cycling performance.  相似文献   

7.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length–tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad?·?s?1 with a target intensity of 90% of isometric strength at 70° of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30°, 50°, 70°, 90° and 110° of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110° (bout×angle: P?<0.01). On day 2, strength averaged 86% of baseline for 30–90° and 102% of baseline for 110°. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P?<0.001; strength: P?<0.01). The repeated bout effect was associated with a rightward shift in the length–tension curve; before the repeated bout, isometric strength was 6.8% lower at 30° and 13.6% higher at 110° compared with values before the initial bout (bout×angle: P?<0.05). Assuming that torque production at 110° occurs on the descending limb of the length–tension curve, the increase in torque at 110° may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

8.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

9.
Attaching elastic tubes (ETs) to resistance training machines can affect the exercise load profile. The purpose of this study was to assess the training effects of added ETs, which were strategically attached to provide additional loads only during the deceleration phase of the knee extension exercise. Twenty-two healthy participants, assigned to either an experimental group (with ETs) or a control group (without ETs), participated in a 12-week strength-training program using a knee extension exercise machine. The acceleration effects were quantified and a method of attaching the ETs to the knee extension machine was developed. The effects of the added ETs were analysed by testing dynamic and isometric maximum contractions at four knee flexion angles (10°, 30°, 50°, and 80°). Analyses of covariance with the initial values as the covariate were used to examine the ET effects. A greater increase in isometric maximum strength was found in the experimental group than in the control group at knee flexion angles of 10° [effect size (ES) = 2.25] and 30° (ES = 1.18). No significant difference in the dynamic maximum strength was found between the groups. The use of ETs increased strength at smaller knee flexion angles with quadriceps that were relatively short.  相似文献   

10.
Abstract

The aim of this study was to test the correlation between knee-to-hip flexion ratio during a single leg landing task and hip and knee strength, and ankle range of motion. Twenty-four male participants from a professional soccer team performed a continuous single leg jump-landing test during 10s, while lower limb kinematics data were collected using a motion analysis system. After biomechanical testing, maximal isometric hip (abduction, extension, external rotation), knee extension and flexion strength were measured. Maximum ankle dorsiflexion range of motion was assessed statically using the weight bearing lunge test. Pearson correlation coefficients were calculated to determine the associations between the predictor variables (knee and hip strength, and ankle ROM) and the main outcome measure (knee-to-hip flexion ratio). Correlation between knee-to-hip flexion ratio and hip abductors strength was significant (r = ?0.47; p = 0.019). No other significant correlations were observed among the variables (p > 0.05). These results demonstrated that a lower hip abductors strength in male soccer players was correlated with a high knee-to-hip flexion ratio during landing from a single leg jump, potentially increasing knee overload by decreasing energy absorption at the hip. The results provide a novel proposal for the functioning of hip muscles to control knee overload.  相似文献   

11.
目的:对辽宁省排球队女运动员下肢急停纵跳落地时的力矩和最大关节角度进行研究,以期对有膝关节损伤的排球运动员进行科学训练提供参考。方法:以14名辽宁省排球队女运动员为研究对象,将运动员分为两组,其中无伤组8人,损伤组6人,采用三维测力平台和红外光电运动捕捉系统,记录受试者在完成急停纵跳动作落地时的髋关节、膝关节、踝关节的力矩以及最大关节角度数据。结果:在急停纵跳落地时,损伤膝关节的旋转、收展力矩大于无伤组,屈伸力矩小于无伤组,损伤组的髋关节的屈伸、收展、旋转力矩均大于无伤组;损伤组的踝关节旋转力矩小于无伤组,收展力矩和屈伸力矩大于无伤组。损伤组的踝关节在屈伸、收展和旋转时的最大关节角度大于无伤组;损伤组的膝关节在屈伸和收展时的最大关节角度大于无伤组,旋转时小于无伤组;损伤的髋关节屈伸和收展时的最大关节角度大于无伤组,髋关节旋转时的最大关节角度左侧小于无伤组,右侧大于无伤组。结论:膝关节损伤的运动员完成急停纵跳动作落地时,通过代偿性改变增大髋关节力矩、增加膝关节旋转和收展力矩,增大踝关节收展和屈伸力矩,增加膝关节和髋关节在屈伸和收展时活动角度,增加膝关节屈伸和收展时活动角度来完成动作。  相似文献   

12.
13.
Abstract

Lateral movements like cutting are essential in many team sport disciplines. The aim of the present study was to analyse adaptations in motor control in response to task unpredictability during lateral movement execution. Twelve subjects performed lateral jumps with different landing modalities (stable, sliding or counteracting) that were either known (predictable setting) or unknown (unpredictable setting) prior to movement execution. Results revealed that regardless of the landing modality, hip joint abduction was significantly greater in the unpredictable compared to predictable setting. Furthermore, during the sliding landing modality, hip flexion decreased from 211 ± 7° to 207 ± 7° and knee flexion decreased from 26 ± 4° to 24 ± 4° at the instant of ground contact in the unpredictable compared to predictable condition. During the stable landing modality, the knee joint abduction increased from ?0.3 ± 6° to ?3 ± 6° after initial ground contact in the unpredictable compared to predictable setting. The present results support our hypothesis that pre-programmed motor activity depends on the predictability of the landing modality during lateral movements. According to its adaptation in the frontal plane and in some extent in the sagittal plane, the hip joint seems to play the major role in the modulation of the pre-programmed activity for successful lateral jump execution in an unpredictable setting. However, these kinematic adaptations are concerning since these changes were associated with higher knee abduction during the stable landing modality and therefore with possible higher risk of injury.  相似文献   

14.
This study aimed to determine whether kinematic data during countermovement jump (CMJ) might explain post-activation potentiation (PAP) phenomenon after an exhausting running test. Thirty-three trained endurance runners performed the Léger Test; an incremental test which consists of continuous running between two lines 20 m apart. CMJ performance was determined before (pre-test) and immediately after the protocol (post-test). Sagittal plane, video of CMJs was recorded and kinematic data were obtained throughout 2-Dimensional analysis. In addition to the duration of eccentric and concentric phases of CMJ, hip, knee and ankle angles were measured at four key points during CMJ: the lowest position of the squat, take-off, landing, and at the lowest position after landing. Additionally, heart rate was monitored, and rate of perceived exertion was recorded at post-test. Analysis of variance revealed a significant improvement in CMJ (p = 0.002) at post-test. Cluster analysis grouped according to whether PAP was experienced (responders group: RG, n = 25) or not (non-responders group: NRG, n = 8) relative to CMJ change from rest to post-test. RG significantly improved (p < 0.001) the performance in CMJ, whereas NRG remained unchanged. Kinematic data did not show significant differences between RG and NRG. Thus, the data suggest that jumping kinematic does not provide the necessary information to explain PAP phenomenon after intensive running exercises in endurance athletes.  相似文献   

15.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

16.
The purpose of this study was to investigate the kinematic and metabolic effects of running on an irregular surface. We also examined how altering the frontal plane foot angle (inversion/eversion) at contact using real-time visual feedback would affect these other variables. Sixteen participants completed three running bouts lasting 5–7 minutes each on an irregular surface (IS) treadmill, a traditional smooth surface (SS) treadmill, and on SS while receiving visual feedback of the frontal plane foot angle at contact (SSF) with a goal of matching IS foot angle on SS. Frontal plane foot angle increased 40% from IS to SS (IS: 8.4 ± 4.09°, SS: 11.8 ± 4.52°, < 0.0001, ES 1.40). Knee flexion angle at contact decreased 33% from IS to SS (IS: 9.2 ± 4.88°, SS: 6.2 ± 5.03°, < 0.0001, ES 1.30). Rate of oxygen consumption decreased by 10% from IS to SS (IS: 37.9 ± 5.68 ml·kg?1·min?1, SS: 34.1 ± 5.07 ml·kg?1·min?1, P < 0.0001, ES 3.05). PSD of leg accelerations decreased by 38% (IS: 0.17 ± 0.07 g2/Hz, SS: 0.106 ± 0.05 g2/Hz, < 0.000, ES 1.69). Frontal plane foot angle decreased by 14% from SS to SSF (SS: 11.8 ± 4.52°, SSF: 10.1 ± 4.42°, P = 0.027. ES 0.62) but did not result in significant changes in any other variables. There were no significant differences in shock attenuation between any conditions (IS: ?9.8 ± 2.26 dB, SS: ?9.5 ± 3.12 dB, SSF: ?9.9 ± 2.62 dB, P = 0.671). Running with greater eversion on the irregular surface may be an attempt by runners to reduce the perceived potential of an inversion ankle sprain. As a partial compensation for the decreased foot angle, runners increased knee flexion. This maintained shock attenuation but increased the rate of oxygen consumption. Altering the foot angle at contact using feedback on the SS caused the knee angle at contact to increase, but did not change shock attenuation or metabolic cost.  相似文献   

17.
The coronal and sagittal plane leg movements of 24 experienced male cyclists were assessed using video analysis while cycling on a Kingcycle windload simulator. The cyclists were grouped into those with a history of injury and an asymptomatic group on the basis of self-reported injury status. The ages, cycling experience, competition distances and competition speeds of the two groups were compared using Student's t-test. No significant differences (P?<0.05) were found for any of these variables. The maximum and minimum shank adduction, shank adduction velocities, knee flexion and ankle dorsiflexion values were also compared using Student's t-test. Significant differences were found at the point of maximum adduction (1.9°; P?=?0.019) and minimum dorsiflexion (4.9°; P?=?0.014). These differences indicated more dorsiflexion and greater abduction on the part of the symptomatic cyclists, supporting previous research that found that cyclists with a history of injury differ from those without a history of injury in the coronal plane leg movement patterns they adopt. Also, the most extreme medial position of the knee relative to the ankle occurred during knee extension. This supports the potential injury mechanism proposed by Francis (1986), which had previously only been examined using coronal plane kinematics.  相似文献   

18.
The length-tension relationship of muscle contraction is well documented in adults. However, research on this relationship in children has been limited. The aim of this study was to compare differences in the torque-joint angle relationship of the quadriceps muscle in children and adults. Eight boys aged 8-10 years and eight men aged 20-26 years performed two maximal voluntary isometric contractions at six knee joint angles (20°, 40°, 60°, 80°, 90°, 100°). The mean of the two trials was used as the performance measure. Both groups demonstrated an expected increase in relative torque as the joint angle increased (P ? 0.05). The men produced significantly greater relative torque at 20°, 40° and 60° knee flexion (P ? 0.05). The percentage of maximal torque at these angles for the men and boys respectively were: 35.2 - 4.3 vs 15.2 - 12%, 63.6 - 9.1 vs 51.8 - 16.8% and 93.6 - 6.5 vs 84.4 - 14.4%. There were no group differences at 80° or 90°. Peak torque was attained at 80° in men, but decreased significantly (P ? 0.05) at 90° and 100°. For boys, peak torque was attained at joint angles of 80° and 90°. The reduction in peak torque at 100° was not statistically significant, but the relative torque at this angle was lower in men than in boys (77.9 - 13.7 vs 87.1 - 10.4%; P ? 0.05). In conclusion, the relationship between torque and joint angle appears to be affected by age.  相似文献   

19.
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。  相似文献   

20.
Knee peak torque (PT) is associated to jump performance in volleyball players. It is not clear whether muscle strength imbalances of the knee joint can influence jump performance. The purpose of study was to analyse the association between PT and knee muscular imbalances with jump performance in professional volleyball players. Eleven elite male volleyball players (90.3 ± 9.7 kg body mass and 1.94 ± 0.06 m height) were evaluated in an isokinetic dynamometer at speeds of 60, 180 and 300 deg/s. Muscle strength imbalances were obtained through calculation of contralateral deficit between limbs and the conventional ratio (hamstrings/quadriceps). Countermovement jump (CMJ) was performed on a force plate to calculate mechanical power and height. Association was found between knee extensor PT at 180 deg/s with CMJ power (r = 0.610, p = 0.046). Conventional ratio at 300 deg/s showed negative association with CMJ (r = ?0.656, p = 0.029). The optimal ratio between knee extensors PT in relation to the flexors PT is associated with the greater mechanical power in CMJ. Contralateral deficit does not seem to be associated with the CMJ performance. Considering the knee extensor PT is associated with CMJ power, our findings suggest that strength-based training in volleyball athletes should not omit the conventional muscle ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号