首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders’ bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14)?=?6.448; p?=?.010) and peak torque (F(2,14)?=?4.777; p?=?.026), but no significant difference was found for time to peak power (F(2,14)?=?0.200; p?=?.821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658?±?221?W, compared to 1436?±?129?W and 1380?±?56?W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in ?0.01?s and a 45/16 in 0.22?s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.  相似文献   

2.
ABSTRACT

The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min?1) and velocity (km · h?1) were recorded for the whole lap and during ascent and descent sections. One-way repeated measure ANOVA was used to determine significant differences. Results revealed no significant main effects for any variables by wheel size during all trials, with the exception of cadence during the descent (F(2, 16) = 8.96; P = .002; P2 = .53). Post hoc comparisons revealed differences lay between the 26″ and 29″ wheels (P = .02). The findings indicate that wheel size does not significantly influence performance during cross-country when ridden by trained mountain bikers, and that wheel choice is likely due to personal choice or sponsorship commitments.  相似文献   

3.
Abstract

The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 ± 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 ± 129 W and 75 ± 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 ± 9 beats · min?1 (89% of age-predicted maximum heart rate). Mean cadence (27 ± 5 rev · min?1) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

4.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

5.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

6.
Abstract

Power output and heart rate were monitored for 11 months in one female ([Vdot]O2max: 71.5 mL · kg?1 · min?1) and ten male ([Vdot]O2max: 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

7.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

8.
ABSTRACT

Purpose: The present study aimed to compare the vertical ground reaction force responses during the performance of the stationary running water-based exercise with and without equipment at different cadences by elderly women. Method: Nineteen elderly women (age: 68.6 ± 5.0 years; body mass: 69.0 ± 9.5 kg; height: 154.9 ± 5.6 cm) completed one session consisting of the performance of the water-based stationary running with elbow flexion and extension immersed to the xiphoid process depth. The exercise was performed in three conditions, without equipment, with water-floating and with water-resistance equipment, at three cadences (80 b·min?1, 100 b·min?1 and maximal) in a randomized order. Peak and impulse of vertical ground reaction force were collected during the exercise using an underwater force plate. Repeated measures two-way ANOVA was used (α = 0.05). Results: Peak vertical ground reaction force (p < .001) and impulse (p ≤ 0.002) resulted in lower values for the water-floating use (0.42–0.48 BW and 0.07–0.13 N.s/BW) in comparison to the water-resistance equipment use (0.46–0.60 BW and 0.09–0.16 N.s/BW) and to the non-use of equipment (0.45–0.60 BW and 0.07–0.17 N.s/BW), except for the impulse at the maximal cadence. In addition, peak vertical ground reaction force at 80 b·min?1 (p = .002) and impulse at the maximal cadence (p < .001) showed lower values compared to the other cadences. Conclusion: The use of water-floating equipment minimizes the vertical ground reaction force during the stationary running water-based exercise performed by elderly women regardless of the cadence.  相似文献   

9.
Purpose: The purpose of this study was to quantify and compare training and competition demands in basketball. Methods: Fifteen semiprofessional male basketball players wore microsensors during physical conditioning training (PCT), games-based training (GBT), and competition to measure absolute and relative (·min?1) PlayerLoadTM (PL) and estimated equivalent distance (EED). Internal responses were calculated using absolute and relative session rating of perceived exertion (sRPE) and summated heart rate zones (SHRZ). Integrated measures were calculated as sRPE:PL and SHRZ:PL ratios. Results: PlayerLoad (arbitrary units [AU]) and EED (m) were statistically significantly (p < .05) higher during PCT (632 ± 139 AU, d = 1.36; 5,964 ± 1,312 m, d = 1.36; 6.50 ± 0.81 AU·min?1, d = 2.44; 61.88 ± 7.22 m·min?1, d = 2.60) and GBT (624 ± 113 AU, d = 1.54; 5,892 ± 1,080 m, d = 1.53; 6.10 ± 0.77 AU·min?1, d = 2.14; 56.76 ± 6.49 m·min?1, d = 2.22) than they were during competition (449 ± 118 AU; 3,722 ± 1474 m; 4.35 ± 1.09 AU·min?1; 41.01 ± 10.29 m·min?1). Summated heart rate zones were statistically significantly (p < .05) higher during PCT (314 ± 86 AU, d = 1.05; 3.22 ± 0.50 AU·min?1, d = 1.94) and GBT (334 ± 79 AU, d = 1.38; 3.19 ± 0.54 AU·min?1, d = 1.83) than they were during competition (225 ± 77 AU; 2.17 ± 0.69 AU·min?1). The ratio of sRPE:PL was statistically significantly (p < .05) higher during competition (1.58 ± 0.85) than during PCT (0.98 ± 0.22, d = 1.44) and GBT (0.91 ± 0.24, d = 1.90). Conclusion: Training demands exceeded competition demands.  相似文献   

10.
Abstract

In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev · min?1. Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous [Vdot]O2 and [Vdot]CO2 measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, sx  = 1.5 at 40 rev · min?1 and 1.8%, sx  = 0.7 at 120 rev · min?1; P = 0.01). Torque production between crank angles of 60° and 150° was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body [Vdot]O2 or [Vdot]CO2. Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, sx  = 0.9 and 25.1%, sx  = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

11.
Abstract

Eleven male judoka, who compete at national level, were recruited with the aim of investigating changes in peak leg power as a result of successive judo bouts and their relationship with lactate production. The participants executed a force–velocity curve to determine peak power in a 90° squat exercise in concentric work. The group then participated in four 5-min judo bouts each separated by 15 min of passive rest. The power developed as a result of the load associated with the maximum peak power reached in the preliminary test was determined, for the same movement, before and after each bout. Finger capillary blood samples were taken after each bout to determine the maximum lactate concentration achieved and lactate clearance. The results showed no effect of successive bouts on peak leg power (P > 0.05) and no difference when comparing the power measured before and after each bout (P > 0.05). Maximum lactate concentration of the fourth bout was lower than that of the first (12.6 ± 3.5 and 14.6 ± 4 mmol · l?1 respectively; P < 0.05), although there was no difference in their clearance dynamics (P > 0.05). On the basis of the results obtained, we conclude that successive judo bouts, with the structure proposed in this study, produce high acidosis levels, which have no effect on the peak power developed in the legs.  相似文献   

12.
Abstract

The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption ([Vdot]O2peak) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev · min?1, whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples (~20 μl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev · min?1 at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and [Vdot]O2peak[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l · min?1] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of [Vdot]O2peak (ICC = 0.78; 95% LoA = 0.04 ± 0.50 l · min?1) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

13.
Abstract

The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg?1 of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg?1) and placebo (1.13 ± 0.10 N·m·kg?1) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg?1) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg?1 and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.  相似文献   

14.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

15.
Abstract

We examined the effects of concomitant increases in crank rate and power output on incremental arm crank ergometry. Ten healthy males undertook three incremental upper body exercise tests to volitional exhaustion. The first test determined peak minute power. The subsequent tests involved arm cranking at an initial workload of 40% peak minute power with further increases of 10% peak minute power every 2 min. One involved a constant crank rate of 70 rev · min?1, the other an initial crank rate of 50 rev · min?1 increasing by 10 rev · min?1 every 2 min. Fingertip capillary blood samples were analysed for blood lactate at rest and exhaustion. Local (working muscles) and cardiorespiratory ratings of perceived exertion (RPE) were recorded at the end of each exercise stage. Heart rate and expired gas were monitored continuously. No differences were observed in peak physiological responses or peak minute power achieved during either protocol. Blood lactate concentration tended to be greater for the constant crank rate protocol (P = 0.06). Test duration was shorter for the increasing than for the constant crank rate protocol. The relationship between local RPE and heart rate differed between tests. The results of this study show that increasing cadence during incremental arm crank ergometry provides a valid assessment of peak responses over a shorter duration but alters the heart rate–local RPE relationship.  相似文献   

16.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

17.
Abstract

The aim of the present study was to examine the relationship between intensities of exercise during match-play of elite-standard soccer referees with those of the players from the same match. Match analysis data were collected (Prozone® Leeds, UK) for 18 elite-standard soccer referees (age 26–49 years) on FA Premier League matches during the 2008/09 English FA Premier League season (236 observations). Running categories for referees and players were as follows: total distance covered (m); high-speed running distance (speed >19.8 km · h?1); and sprinting distance (speed >25.2 km · h?1). Analysis of the distance–time regression coefficients revealed no differences between the referees' and players' within-match rates of change for total distance covered (?0.594 ± 0.394 vs. ?0.713 ± 0.269 m · min?1; P = 0.104), high-speed running (?0.039 ± 0.077 vs. ?0.059 ± 0.030 m · min?1; P = 0.199), and sprinting (?0.003 ± 0.039 vs. ?0.021 ± 0.017 m · min?1; P = 0.114). In addition, there were no differences between across-season rates of change for total distance (–26.756 ± 40.434 vs. ?20.031 ± 25.502 m per match day; P = 0.439) and sprinting (–9.662 ± 7.564 vs. ?8.589 ± 4.351 m per match day; P = 0.542). These results show that elite-standard soccer referees' intensities of exercise during match-play are interrelated with those of the players and thus demonstrate that referees are able to keep pace with the players during FA Premier League matches.  相似文献   

18.
There is currently a dearth of information describing cycling performance outside of propulsive and physiological variables. The aim of the present study was to utilise a brake power meter to quantify braking during a multi-lap cross-country mountain bike time trial and to determine how braking affects performance. A significant negative association was determined between lap time and brake power (800.8 ± 216.4 W, mean ± SD; r = ?0.446; p < 0.05), while the time spent braking (28.0 ± 6.4 s) was positively associated with lap time (314.3 ± 37.9 s; r = 0.477; p < 0.05). Despite propulsive power decreasing after the first lap (p < 0.05), lap time remained unchanged (p > 0.05) which was attributed to decreased brake work (p < 0.05) and brake time (p < 0.05) in both the front and rear brakes by the final lap. A multiple regression model incorporating braking and propulsion was able to explain more of the variance in lap time (r2 = 0.935) than propulsion alone (r2 = 0.826). The present study highlights that riders’ braking contributes to mountain bike performance. As riders repeat a cross-country mountain bike track, they are able to change braking, which in turn can counterbalance a reduction in power output. Further research is required to understand braking better.  相似文献   

19.
Abstract

In this study, video and force analysis techniques were used to distinguish between dragon boat paddlers of different ability. Six elite paddlers (three males, three females) and six sub-elite paddlers (two males, four females) were compared during high-intensity paddling (80–90 strokes · min?1). Video filming was conducted for two-dimensional kinematic analysis and an instrumented paddle was used to collect force data. Paddling efficiency, paddle force characteristics, and paddler kinematic variables were measured. Elite paddlers achieved higher paddling efficiency than sub-elite paddlers (elite: 76 ± 4%; sub-elite: 67 ± 10%; P = 0.080). Elite paddlers also showed higher peak force (elite: 16.3 ± 4.8 N · kg?2/3; sub-elite: 11.4 ± 2.6 N · kg?2/3; P = 0.052), average force (elite: 7.9 ± 2.8 N · kg?2/3; sub-elite: 5.5 ± 1.4 N · kg?2/3; P = 0.084), and impulse (elite: 3.0 ± 0.9 (N · s) · kg?2/3; sub-elite: 1.9 ± 0.4 (N · s) · kg?2/3; P = 0.026) than sub-elite paddlers, but these three results should be viewed with caution due to the small sample size and the unequal number of males and females in the two groups. Superior technique and greater strength enable the elite paddlers to achieve higher paddling efficiency. Paddlers use different joint movement patterns to develop propulsion, which are reflected in variations in the force–time curve.  相似文献   

20.
This study aimed at testing whether there are mean propulsive velocities (MPVs) capable of maximising the mean propulsive power (MPP) during the execution of bench press (BP), bench throw (BT), half squat (HS) and jump squat (JS). Additionally, we assessed the differences in MPP/MPV between ballistic and traditional exercises. Seventeen male rugby sevens players performed MPP tests in BP, BT, HS and JS and maximum isometric force (MIF) tests in HS and BP. The JS presented higher MPP (977.4 ± 156.2 W) than the HS (897.9 ± 157.7 W) (< 0.05); the BP (743.4 ± 100.1 W) presented higher MPP than the BT (697.8 ± 70.4 W) (< 0.05). Ballistic exercises presented higher optimum MPV (JS = 1.02 ± 0.07 m·s?1; BT = 1.67 ± 0.15 m·s?1) than traditional exercises (HS = 0.93 ± 0.08 m·s?1; BP = 1.40 ± 0.13 m·s?1) (< 0.05). The optimum MPP in the JS, BT, HS and BP occurred at 28.2 ± 5.79, 23.3 ± 4.24, 32.4 ± 9.46 and 27.7 ± 5.33% of the MIF, respectively. The coefficient of variation (CV) of MPV at optimum MPP ranged from 7.4% to 9.7%, while the CV of %MIF ranged from 18.2% to 29.2%. The MPV is a more precise indicator of the optimum loads than the percentages of MIF due to its low inter-subject variability as expressed by CV. Therefore, MPV can be used to determine the optimum power load in the four investigated exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号