首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Currently, the physiological mechanisms that allow elite level climbers to maintain intense isometric contractions for prolonged periods of time are unknown. Furthermore, it is unclear whether blood flow or muscle oxidative capacity best governs performance. This study aimed to determine the haemodynamic kinetics of 2 forearm flexor muscles in 3 ability groups of rock climbers. Thirty-eight male participants performed a sustained contraction at 40% of maximal voluntary contraction (MVC) until volitional fatigue. Oxygen saturation and blood flow was assessed using near infrared spectroscopy and Doppler ultrasound. Compared to control, intermediate, and advanced groups, the elite climbers had a significantly (< 0.05) higher strength-to-weight ratio (MVC/N), de-oxygenated the flexor digitorum profundus significantly (< 0.05) more (32, 34.3, and 42.8 vs. 63% O2, respectively), and at a greater rate (0.32, 0.27, and 0.34 vs. 0.77 O2%·s?1, respectively). Furthermore, elite climbers de-oxygenated the flexor carpi radialis significantly (< 0.05) more and at a greater rate than the intermediate group (36.5 vs. 14.6% O2 and 0.43 vs. 0.1O2%·s?1, respectively). However, there were no significant differences in total forearm ? blood flow. An increased MVC/N is not associated with greater blood flow occlusion in elite climbers; therefore, oxidative capacity may be more important for governing performance.  相似文献   

2.
3.
Abstract

The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force – time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N · s, s = 12,229; non-climbers: 35,325 N · s, s = 9724) but not in the continuous test (climbers: 21,043 N · s, s = 4474; non-climbers: 15,816 N · s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force – time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023 – 40% test timepoint, P = 0.014 – 60% test timepoint). Pressor responses were similar between groups and not related to the force – time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

4.
Different ambient temperatures are known to affect muscular performance based on the type of contraction. The effect of cold (10°C) and thermoneutral (TN) (24°C) ambient temperatures on finger flexor performance was examined in 12 rock climbers. After 30?min of seated rest in the designated temperature condition, participants completed maximal voluntary contractions (MVC) on a climbing-specific finger flexor assessment device equipped with a crimp grip hold. Participants then completed an intermittent fatiguing task until failure. The fatiguing task consisted of 10-s contractions at 40% MVC followed by a 3-s of rest. MVC recovery was assessed immediately, 5, 10, and 15?min post-task failure. Estimated muscle temperature and subjective thermal ratings were significantly lower throughout testing in the cold condition (P?<?.001). Finger flexor MVC strength was similar between conditions at baseline and throughout recovery. Time to task failure was significantly longer (364?±?135 vs. 251?±?97 s, P?=?.003) and force time integral was greater (53,715?±?19,988 vs. 40,243?±?15,360?Ns, P?=?.001) during the cold condition. No significant differences were found between conditions for force variability or electromyography (EMG) at the start and end of the fatiguing task. However, the rate of increase in EMG for the TN condition was significantly faster (P?=?.03). These results suggest important implications for researchers when examining climbing performance, especially in outdoor settings where temperatures may vary from day to day. Inconsistencies in testing temperatures might significantly affect muscular endurance.  相似文献   

5.
Abstract

The aim of this study was to assess the effects of acute passive stretching on the electrical and mechanical response of a previously fatigued muscle. Eleven participants underwent maximal tetanic stimulations (50 Hz) of the medial gastrocnemius, before and after a fatiguing protocol and after a bout of passive stretching of the fatigued muscle. During contraction, surface electromyography (EMG), mechanomyography (MMG), and force were recorded. The following parameters were calculated: (1) the EMG root mean square (RMS), mean frequency, and fibre conduction velocity; (2) MMG peak-to-peak and RMS; (3) the peak force, contraction time, half-relaxation time, peak rate of force development (dF/dt) and its acceleration (d2 F/dt 2). Fatigue reduced peak force by 18% (P < 0.05) and affected the other force, EMG, and MMG parameters. After stretching: (1) all EMG parameters recovered to pre-fatigue values; (2) MMG peak-to-peak remained depressed, while RMS recovered to pre-fatigue values; (3) the peak force, peak rate of force development and its acceleration were further reduced by 22, 18, and 51%, respectively, and half-relaxation time by 40% (P < 0.05). In conclusion, acute passive stretching, when applied to a previously fatigued muscle, further depresses the maximum force-generating capacity. Although stretching does not alter the electrical parameters of the fatigued muscle, it does affect the mechanical behaviour of the muscle–tendon unit.  相似文献   

6.
Abstract

In this study, we examined the effects of time-of-day-specific strength training on maximum strength and electromyography (EMG) of the knee extensors in men. After a 10-week preparatory training period (training times 17:00–19:00 h), 27 participants were randomized into a morning (07:00–09:00 h, n = 14) and an evening group (17:00–19.00 h, n = 13). Both groups then underwent 10 weeks of time-of-day-specific training. A matched control group (n = 7) completed all testing but did not train. Unilateral isometric knee extension peak torque (MVC) and one-repetition maximum half-squat were assessed before and after the preparatory training and after the time-of-day-specific training at times that were not training-specific (between 09:00 and 16:00 h). During training-specific hours, peak torque and EMG during MVC and submaximum isometric contraction at 40% MVC were assessed before and after the time-of-day-specific training. The main finding was that a significant diurnal difference (P < 0.01) in peak torque between the 07:00 and 17:00 h tests decreased after time-of-day-specific training in the morning group but not in the evening or control groups. However, the extent of this time-of-day-specific adaptation varied between individuals. Electromyography during MVC did not show any time-of-day-specific adaptation, suggesting that peripheral rather than neural adaptations are the main source of temporal specificity in strength training.  相似文献   

7.
Abstract

The temporal structure, or complexity, of muscle torque output reflects the adaptability of motor control to changes in task demands. This complexity is reduced by neuromuscular fatigue during intermittent isometric contractions. We tested the hypothesis that sustained fatiguing isometric contractions would result in a similar loss of complexity. To that end, nine healthy participants performed, on separate days, sustained isometric contractions of the knee extensors at 20% MVC to task failure and at 100% MVC for 60?s. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified by calculating approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. Fatigue reduced the complexity of both submaximal (ApEn from 1.02?±?0.06 to 0.41?±?0.04, P?<?0.05) and maximal contractions (ApEn from 0.34?±?0.05 to 0.26?±?0.04, P?<?0.05; DFA α from 1.41?±?0.04 to 1.52?±?0.03, P?<?0.05). The losses of complexity were accompanied by significant global, central and peripheral fatigue (all P?<?0.05). These results demonstrate that a fatigue-induced loss of torque complexity is evident not only during fatiguing intermittent isometric contractions, but also during sustained fatiguing contractions.  相似文献   

8.
The aim of this study was to assess the effect of a unilateral anterior cruciate ligament reconstruction (ACLR) on maximum voluntary contraction (MVC) and explosive strength of both the involved limb and the uninvolved limb. Nineteen male athletes completed a standard isometric testing protocol 4 months post-ACLR, while 16 healthy participants served as a control group (CG). The explosive strength of the knee extensors and flexors was assessed as RFD obtained from the slope of the force–time curves over various time intervals. Both muscle groups of the involved limb had significantly lower MVC compared to the uninvolved. The involved limb also had significantly lower RFD in the late phase of contraction (140–250 ms) for both knee extensors and flexors (P < 0.05). There was no difference in MVC between the uninvolved limb and the CG. However, RFD of the uninvolved limb was lower compared to CG for both knee extensors (0–180 ms; P < 0.01) and flexors (0–150 ms; P < 0.05). ACLR leads to lower MVC and explosive strength of the involved limb. As a consequence of potential crossover (presumably neural-mediated) effects, explosive strength deficits could be bilateral, particularly in the early phase of the contraction (<100 ms).  相似文献   

9.
We investigated the association between changes in vastii electromyography (EMG) and knee extensor fatigue during high-intensity cycling, and the subsequent effect on lower-limb power and intermuscular coordination during all-out cycling. On two separate days, participants completed 30-s all-out cycling or 10-min of high-intensity cycling followed by 30-s all-out cycling. EMG for gluteus maximus (GMAX), rectus femoris (RF), vastii (VAS), hamstrings (HAM) and gastrocnemius (GAS); co-activation for GMAX/RF, VAS/HAM and VAS/GAS; isometric maximal voluntary force (IMVF) and resting twitch (RT) of the knee extensors were measured. VAS EMG increases during high-intensity cycling (6% to 14%, P < 0.05) were negatively correlated (r = ?0.791, P < 0.05) with knee extensor IMVF decreases (?2% to?36%, P < 0.05) following the exercise. Knee extensor IMVF decreases were positively correlated (r = 0.757, P < 0.05) with all-out cycling power reductions (0% to ?27%, P < 0.05). VAS/GAS co-activation did not change (P > 0.05) during all-out cycling while VAS and GAS EMG decreased. Larger increase in VAS EMG during high-intensity cycling was associated with greater knee extensor fatigue and larger power reduction during all-out cycling. High VAS/GAS co-activation potentially limited power reduction induced by knee extensor fatigue during all-out cycling.  相似文献   

10.
This study compared the effects of six warm-up modalities on peak power output (PPO) during the high-pull exercise. Nine resistance-trained males completed six trials using different warm-ups: high-pull specific (HPS), cycle, whole body vibration (WBV), cycle+HPS, WBV+HPS and a control. Intramuscular temperature (Tm) was increased by 2°C using WBV or cycling. PPO, Tm and electromyography (EMG) were recorded during each trial. Two high-pulls were performed prior to and 3 min after participants completed the warm-up. The greatest increase in PPO occurred with HPS (232.8 ± 89.7 W, < 0.001); however, this was not different to combined warm-ups (cycle+HPS 158.6 ± 121.1 W; WBV+HPS 177.3 ± 93.3 W, = 1.00). These modalities increased PPO to a greater extent than those that did not involve HPS (all P < 0.05). HPS took the shortest time to complete, compared to the other conditions (P < 0.05). EMG did not differ from pre to post warm-up or between modalities in any of the muscles investigated. No change in Tm occurred in warm-ups that did not include cycling or WBV. These results suggest that a movement-specific warm-up improves performance more than temperature-related warm-ups. Therefore, mechanisms other than increased muscle temperature and activation may be important for improving short-term PPO.  相似文献   

11.
Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (= 0.001) and posterior thigh (< 0.001) rotations, resulting in a smaller knee flexion range of motion (< 0.001). At maximum squat depth, ankle plantar flexor (< 0.001) and knee extensor (< 0.001) NJM were higher in unrestricted squats. Hip extensor NJM (= 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (> 0.05), vastus medialis (> 0.05) and rectus femoris (> 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.  相似文献   

12.
This study aimed to investigate the effect of contact (C-SSG) and no-contact (NC-SSG) handball small-sided games (SSGs) on motion patterns and physiological responses of elite handball players. Twelve male handball players performed 10 C-SSG and 10 NC-SSG while being monitored through the heart rate (HR) and rate of perceived exertion (RPE) as physiological responses and time-motion activities profile using video-match analysis. Both game conditions resulted in similar HR responses (> 0.05), but the NC-SSG led to a higher RPE scores. The time-motion activity analysis featured NC-SSG with a greater amount of walking (855.6 ± 25.1 vs. 690.6 ± 35.2 m) and backward movements (187.5 ± 12.3 vs. 142.5 ± 8.7 m) combined with fast running (232.3 ± 8.5 vs. 159.7 ± 5.7 m) and sprinting (79.5 ± 4.7 vs. 39.7 ± 3.7 m) activities (< 0.001). Conversely, C-SSG had a higher percentage of jogging and sideway movements associated with greater frequency of jumping (0.87 ± 0.09 vs. 0.31 ± 0.06 nr) and physical contact (1.82 ± 0.55 vs. 0.25 ± 0.03 nr) events (< 0.001). No between-regimen differences were found for the number of throws (= 0.745). In addition, the RPE was significantly correlated with fast running relative distances (= 0.909, < 0.001) and sprinting relative distances (= 0.939, < 0.001). In conclusion, this investigation showed that both C-SSG and NC-SSG in team handball can effectively represent specifically oriented exercises, according to the sport-task and the performance demands.  相似文献   

13.
The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players’ number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; < 0.05), squat jump peak power (< 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; < 0.05) and countermovement jump peak power (< 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players.  相似文献   

14.
ABSTRACT

This study aimed to translate movement patterns, technical skills and tactical actions associated with high-intensity efforts into metrics that could potentially be used to construct position-specific conditioning drills. A total of 20 individual English Premier League players’ high-intensity running profiles were observed multiple times (= 100) using a computerised tracking system. Data were analysed using a novel high-intensity movement programme across five positions (centre back [CB], full-back [FB], central midfielder [CM], wide midfielder [WM] and centre forward [CF]). High-intensity efforts in contact with the ball and the average speed of efforts were greater in WMs than CBs, CMs and CFs (effect sizes [ES]: 0.9–2.1, < 0.05). WMs produced more repeated efforts than CBs and CMs (ES: 0.6–1.3, < 0.05). In possession, WMs executed more tricks post effort than CBs and CMs (ES: 1.2–1.3, < 0.01). FBs and WMs performed more crosses post effort than other positions (ES: 1.1–2.0, < 0.01). Out of possession, CFs completed more efforts closing down the opposition (ES: 1.4–5.0, < 0.01) but less tracking opposition runners than other positions (ES: 1.5–1.8, < 0.01). CFs performed more arc runs before efforts compared to CBs, FBs and WMs (ES: 0.9–1.4, < 0.05), however, CBs completed more 0–90° turns compared to FBs, CMs and WMs (ES: 0.9–1.1, < 0.01). The data demonstrate unique high-intensity trends in and out of possession that could assist practitioners when devising position-specific drills.  相似文献   

15.
Abstract

This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (<0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.  相似文献   

16.
This study investigated whether haematological markers differ between young and masters marathon participants, running at similar performance levels. Nine young (31.89 ± 4.96 years) and eight masters (63.13 ± 4.61 years) runners participated. At five time points (pre-race through 54 h post-race), a complete blood cell count, basic metabolic panel and creatine kinase (CK) isoenzyme panel were assessed. Race performance was standardised using the World Masters Association Age Grading Performance Tables. Total CK levels were elevated for all participants at all time points post-race (P < 0.001). The CK-isoenzyme MB% was elevated across groups at 6, 30 and 54 h post-race (< 0.01, < 0.01 and < 0.05), with masters runners having a higher CK-MB% at 30 and 54 h (< 0.05, < 0.05). Total white blood cell and neutrophil counts were elevated through 6 h post-race (< 0.001), with higher levels found in younger runners (< 0.001). When considering all blood work, masters runners had a higher number of abnormal values at 6, 30 and 54 h post-race (< 0.05, < 0.01 and < 0.05). In conclusion, masters runners demonstrated sustained CK-MB elevation, which may suggest greater cardiac stress. However, future studies using additional cardiac markers should be completed to confirm these findings. In addition, masters runners showed an increased number of laboratory values outside normal range, indicating the body’s reduced capacity to respond to marathon running.  相似文献   

17.
We examined the influence of stretching alone (SS) or combined with self-massage (SM) on maximal ankle dorsiflexion angle, maximal voluntary contraction (MVC) torque and calf muscle activity, and subcutaneous tissue thickness in 15 young (25 ± 3 years) and 15 middle-aged (45 ± 5 years) adults. Participants performed two sessions of calf muscle stretches (3x 30-s stretches, 30-s rest): stretch after a 60-s control condition (SS) and stretch after 60 s of self-massage with therapy balls (SM). Evaluations were performed before and 5 min after the intervention. Linear mixed effects model revealed no main effect for age on ROM or MVC and significant main effects for treatment and time. Change in ankle angle was greater after SM: SS = 3.1 ± 2°, SM = 6.2 ± 3.3° (Hedges’ g = 0.98, p < 0.001). Similar results were observed for MVC torque: SS = ?4 ± 16%, SM = 12 ± 16% (Hedges’ g = 0.97, p = 0.0001). Changes in MVC torque and absolute EMG amplitude were correlated, but subcutaneous tissue thickness was not altered by treatment. The gains in ROM were more pronounced in less flexible middle-aged adults, underscoring the need to include flexibility exercises in their training.  相似文献   

18.
There have been few reports of advanced body composition profiles of elite fast bowlers in the sport of cricket. Therefore, the aim of the current study was to determine total, regional and unilateral body composition characteristics of elite English first-class cricket fast bowlers in comparison with matched controls, using dual-energy X-ray absorptiometry (DXA). Twelve male fast bowlers and 12 age-matched, non-athletic controls received one total-body DXA scan. Anthropometric data were obtained as well as left and right regional (arms, legs and trunk) fat mass, lean mass and bone mineral content. Fast bowlers were significantly taller and heavier than controls (< 0.05). Relative to body mass, fast bowlers possessed greater lean mass in the trunk (80.9 ± 3.7 vs. 76.7 ± 5.9%; = 0.047) and bone mineral content in the trunk (2.9 ± 0.3 vs. 2.6 ± 0.3%; = 0.049) and legs (5.4 ± 0.5 vs. 4.6 ± 0.6%; = 0.003). In the arm region, fast bowlers demonstrated significantly greater unilateral differences in bone mineral content (10.6 ± 6.6 vs. 4.5 ± 3.9%; = 0.012). This study provides specific body composition values for elite-level fast bowlers and highlights the potential for muscle and bone imbalances that may be useful for conditioning professionals. Our findings also suggest beneficial adaptations in body composition and bone mass in fast bowlers compared with their non-athletic counterparts.  相似文献   

19.
Abstract

The study aimed to assess the role of deep and superficial massage and passive stretching recovery on blood lactate concentration ([La?]) kinetics after a fatiguing exercise compared to active and passive recovery. Nine participants (age 23 ± 1 years; stature 1.76 ± 0.02 m; body mass 74 ± 4 kg) performed on five occasions an 8-min fatiguing exercise at 90% of maximum oxygen uptake, followed by five different 10-min interventions in random order: passive and active recovery, deep and superficial massage and stretching. Interventions were followed by 1 hour of recovery. Throughout each session, maximum voluntary contraction (MVC) of the knee extensor muscles, [La?], cardiorespiratory and metabolic variables were determined. Electromyographic signal (EMG) from the quadriceps muscles was also recorded. At the end of the fatiguing exercise, [La?], MVC, EMG amplitude, and metabolic and cardiorespiratory parameters were similar among conditions. During intervention administration, [La?] was lower and metabolic and cardiorespiratory parameters were higher in active recovery compared to the other modalities (P < 0.05). Stretching and deep and superficial massage did not alter [La?] kinetics compared to passive recovery. These findings indicate that the pressure exerted during massage administration and stretching manoeuvres did not play a significant role on post-exercise blood La? levels.  相似文献   

20.
The impact that muscle fatigue and taping have on proprioception in an applied sporting context remains unclear. The purpose of this study was to investigate disturbances in position sense at the shoulder joint, and asses the effectiveness of adhesive tape in preventing injury and improving performance, after a bout of cricket fast bowling. Among amateur cricket players (= 14), shoulder position sense, maximum voluntary contraction (MVC) force and bowling accuracy was assessed before and immediately after a fatiguing exercise bout of fast bowling. Participants were tested with the shoulder taped and untapped. Shoulder extension MVC force dropped immediately and 30 min after the exercise (P < 0.05 and P < 0.05, respectively). Position sense errors increased immediately after exercise (P < 0.05), shifting in the direction of shoulder extension for all measurements. Taping had no effect on position errors before exercise, but did significantly reduce position errors after exercise at mid-range shoulder flexion angles (45° and 60°; P < 0.05 and P < 0.05, respectively). Taping had no significant effect on bowling accuracy. These findings may be explained by a body map shift towards a gravity neutral position. Added cutaneous input from the tape is proposed to contribute more to shoulder position sense when muscles are fatigued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号