首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Research has revealed that field hockey drag flickers have greater odds of hip and lumbar injuries compared to non-drag flickers (DF). This study aimed to compare the biomechanics of a field hockey hit and a specialised field hockey drag flick. Eighteen male and seven female specialised hockey DF performed a hit and a drag flick in a motion analysis laboratory with an 18-camera three-dimensional motion analysis system and a calibrated multichannel force platform to examine differences in lower limb and lumbar kinematics and kinetics. Results revealed that drag flicks were performed with more of a forward lunge on the left lower limb resulting in significantly greater left ankle dorsiflexion, knee, hip and lumbar flexion (Ps<0.001) compared to a hit. Drag flicks were also performed with significantly greater lateral flexion (P < 0.002) and rotation of the lumbar spine (P < 0.006) compared to a hit. Differences in kinematics lead to greater shear, compression and tensile forces in multiple left lower limb and lumbar joints in the drag flick compared to the hit (P < 0.05). The biomechanical differences in drag flicks compared to a hit may have ramifications with respect to injury in field hockey drag flickers.  相似文献   

2.
The objective of this study was to identify biomechanical predictors for accuracy and speed of the wrist shot in floorball, comparing two different starting feet positions.

Ten floorball players performed 2 series of 10 stationary wrist shots, in 2 different positions (feet at a right angle to the end of the stick, oriented towards a target and feet parallel to the end of the stick and to the target). A 12-camera motion capture system, tracking reflective markers on key landmarks, was used to record participant and stick kinematics. Accuracy of the shot was quantified by distance of impact from target centre. Player gaze was approximated from head position.

Shot accuracy was significantly better (0.007) when feet were at right angle (0.22 [0.14] m) than when they were parallel (0.27 [0.20] m). Ball speed was no significantly different (P = 0.485) between the right angle position (23.50 [17.52] m · s?1) and the parallel position (23.50 [17.95] m · s?1). Between self-selected position and imposed position, there was no significant difference. Players looking at the target during shooting had greater accuracy. Regression models suggested that ball speed was mainly influenced, in both positions, by the flexion of the supporting leg (ankle, knee and hip), by the rotation of the hip and of the trunk, especially for the spine angles, and by the rotation and abduction–adduction movements of the wrist of the hand on the top of the stick. The comparison between players showed important differences in these technical skills.  相似文献   

3.
The purpose of this study was to measure the contributions of the motions of body segments and joints to racquet head speed during the tennis serve. Nine experienced male players were studied using three-dimensional film analysis. Upper arm twist orientations were calculated with two alternative methods using joint centres and skin-attached markers. The results showed that skin-attached markers could not be used to calculate accurate upper arm twist orientations due to skin movement, and that the use of joint centres produced errors of more than 20 degrees in the upper arm twist orientation when the computed elbow flexion/extension angle exceeded 135 degrees in the final 0.03 s before impact. When there were large errors in the upper arm twist orientation, it was impossible to obtain accurate data for shoulder or elbow joint rotations about any axis. Considering only the contributors that could be measured within our standards of acceptable error, the approximate sequential order of main contributors to racquet speed between maximum knee flexion and impact was: shoulder external rotation, wrist extension, twist rotation of the lower trunk, twist rotation of the upper trunk relative to the lower trunk, shoulder abduction, elbow extension, ulnar deviation rotation, a second twist rotation of the upper trunk relative to the lower trunk, and wrist flexion. The elbow extension and wrist flexion contributions were especially large. Forearm pronation made a brief negative contribution. Computed contributions of shoulder internal rotation, elbow extension and forearm pronation within the final 0.03 s before impact were questionable due to the large degree of elbow extension. Near impact, the combined contribution of shoulder flexion/extension and abduction/adduction rotations to racquet speed was negligible.  相似文献   

4.
The purpose of this study was to explore the relationship between hockey stick shaft stiffness and puck speed with mechanical energy considerations during stationary wrist and slap shots. Thirty left-handed pro-model composite hockey sticks, submitted by eleven hockey stick manufacturers, were subjected to a mechanical cantilever bend test to determine the shaft stiffness of each stick. Eight sticks representing the entire spectrum of stiffnesses were then used by five elite male hockey players to perform stationary wrist and slap shots in a laboratory setting. Eight infra-red high-speed digital video cameras were used to capture shaft deformation and puck speed. A second mechanical test then replicated the loading patterns applied to each stick during shooting. Force-deformation data from this test were used to determine the shaft stiffness and potential energy storage and return associated with each stick during shooting. The results of this study suggest that shaft stiffness has an influence on puck speed in wrist but not slap shots. During a wrist shot, a given player should realise higher puck speeds with a stick in which they store increased elastic potential energy in the shaft. In general, flexible sticks were found to store the most energy. However, how the athlete loads the stick has as much influence on puck speed as stick construction. Energy considerations were unable to explain changes in puck speed for the slap shot. For this type of shot it is the athlete and not the equipment influencing puck speed, but the governing mechanisms have yet to be elucidated.  相似文献   

5.
Peak joint angles and joint angular velocities were evaluated for varying speed forehands in an attempt to better understand what kinematic variables are most closely related to increases in post-impact ball velocity above 50% of maximal effort. High-speed video was used to measure three-dimensional motion for 12 highly skilled tennis players who performed forehands at three different post-impact ball speeds: fast (42.7 +/- 3.8 m/s), medium (32.1 +/- 2.9 m/s), and slow (21.4 +/- 2.0 m/s). Several dominant-side peak joint angles (prior to ball impact) increased as post-impact ball speed increased from slow to fast: wrist extension (16%), trunk rotation (28%), hip flexion (38%), knee flexion (27%), and dorsiflexion (5%). Between the aforementioned peak joint angles and ball impact, dominant-side peak angular velocities increased as ball speed increased from slow to fast: peak wrist flexion (118%), elbow flexion (176%), trunk rotation (99%), hip extension (143%), knee extension (56%), and plantarflexion (87%). Most kinematic variables changed as forehand ball speed changed; however, some variables changed more than others, indicating that range of motion and angular velocity for some joints may be more closely related to post-impact ball speed than for other joints.  相似文献   

6.
Three‐dimensional (3‐D) high‐speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3‐D space reconstruction from 2‐D images recorded via laterally placed phase‐locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M‐162°; F‐158°); the elbow angle showed significantly greater flexion for females (85°) than males (107°).

During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158° to 148° at release. The wrist movement for male subjects was different from the females in that it flexed from 162° to 147°, 0.10 s prior to release and then extended to 159° at palmar release before again flexing to 156° at release. The amount of elbow extension during the forward swing was 48° for both groups; however, the females actually released the ball with the forearm vertical (89°) compared to the male forearm angle of 78°. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F‐148°; M‐156° at wrist and F‐126°; M‐148° at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s ‐1 and 14.7 m s‐ 1 for male and female subjects respectively.  相似文献   

7.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

8.
The penalty throw in water polo: a cinematographic analysis   总被引:1,自引:0,他引:1  
Three-dimensional (3-D) high-speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3-D space reconstruction from 2-D images recorded via laterally placed phase-locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M-162 degrees; F-158 degrees); the elbow angle showed significantly greater flexion for females (85 degrees) than males (107 degrees). During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158 degrees to 148 degrees at release. The wrist movement for male subjects was different from the females in that it flexed from 162 degrees to 147 degrees, 0.10 s prior to release and then extended to 159 degrees at palmar release before again flexing to 156 degrees at release. The amount of elbow extension during the forward swing was 48 degrees for both groups; however, the females actually released the ball with the forearm vertical (89 degrees) compared to the male forearm angle of 78 degrees. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F-148 degrees; M-156 degrees at wrist and F-126 degrees; M-148 degrees at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s-1 and 14.7 m s-1 for male and female subjects respectively.  相似文献   

9.
The drag flick is the preferred method of scoring during a penalty corner in field hockey. Performing the drag flick requires a combination of strength, coordination and timing, which may increase susceptibility to injuries. However, injury prevalence in drag flickers has not previously been investigated. Therefore, this study compared the injury prevalence and severity of lower limb and lower back injuries between drag flickers and non-drag flickers in field hockey. A total of 432 local, national and international adult field hockey players (242 males, 188 females) completed an online questionnaire to retrospectively determine the 3-month prevalence and severity of ankle, knee, hip and lower back injuries. Of this group, 140 self-identified as drag flickers and 292 as non-drag flickers. The results showed that drag flickers had significantly higher prevalence of hip (OR: 1.541; 95% CI: 1.014, 2.343) and lower back injury (OR: 1.564; 95% CI: 1.034, 2.365) compared to non-drag flickers. No significant differences were observed between drag flickers and non-drag flickers in injury prevalence at the ankle and knee. There were no significant between-group differences in injury severity scores. Overall, the prevalence of hip and lower back injuries was significantly higher in drag flickers compared to non-drag flickers.  相似文献   

10.
The purpose of this study was to identify joint angular kinematics that corresponds to shooting accuracy in the stationary ice hockey wrist shot. Twenty-four subjects participated in this study, each performing 10 successful shots on four shooting targets. An eight-camera infra-red motion capture system (240 Hz), along with passive reflective markers, was used to record motion of the joints, hockey stick, and puck throughout the performance of the wrist shot. A multiple regression analysis was carried out to examine whole-body kinematic variables with accuracy scores as the dependent variable. Significant accuracy predictors were identified in the lower limbs, torso and upper limbs. Interpretation of the kinematics suggests that characteristics such as a better stability of the base of support, momentum cancellation, proper trunk orientation and a more dynamic control of the lead arm throughout the wrist shot movement are presented as predictors for the accuracy outcome. These findings are substantial as they not only provide a framework for further analysis of motor control strategies using tools for accurate projection of objects, but more tangibly they may provide a comprehensive evidence-based guide to coaches and athletes for planned training to improve performance.  相似文献   

11.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = - 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

12.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

13.
高跃文 《体育科研》2012,33(4):77-79
成功实施短角球进攻包含很多方面的因素,生物力学是其中最重要因素之一。本文根据6名曲棍球运动员以3种拉射姿势分别向球门4个边角进攻的运动学参数,归纳总结出不同边角的最佳拉射角,为运动队短角球训练提供一定的运动生物力学实验依据。  相似文献   

14.
The goal of this research was to develop a method to quantify the dynamic strain profile (DSP) of an ice hockey stick shaft and assess the potential influence of player skill and stick shaft stiffness on DSP during slap (SS) and wrist shots (WS). Seventeen adult males performed shots with two different stick stiffness’ on synthetic ice. Subjects were subdivided as high (HC) and low calibre (LC). Dependent measures included strain measures from five strain gauge pairs along the shaft length recorded at 10 kHz. In general, this approach was sufficiently sensitive to clearly distinguish between shot types (strains SS > WS), player calibre (strains HC > LC) and stick models (strain flex77 > flex102) as well as to identify within stick deflection differences along the shaft. This strain based analysis has a time and spatial resolution undetected by common motion capture based systems.  相似文献   

15.
The purpose of this study was to investigate effects of the ground reaction forces on the rotation of the body as a whole and on the joint torques of the lower limbs associated with trunk and pelvic rotation in baseball tee batting. A total of 22 male collegiate baseball players participated in this study. Three-dimensional coordinate data were acquired by a motion capture system (250 Hz), and ground reaction forces of both legs were measured with three force platforms (1,000 Hz). Kinetic data were used to calculate the moment about the vertical axis through the body’s centre of mass resulting from ground reaction forces, as well as to calculate the torque and mechanical work in the lower limb joints. The lateral/medial ground reaction force generated by both legs resulted in the large whole body moment about its vertical axis. The joint torques of flexion/extension of both hips, adduction of the stride hip and extension of the stride knee produced significantly larger mechanical work than did the other joint torques. To obtain high bat-head speed, the batter should push both legs in the lateral/medial direction by utilising both hips and stride knee torques so as to increase the whole body rotation.  相似文献   

16.
Research has revealed that individual soccer goalkeepers respond differently to penalty shots, depending on their specific perceptual and motor capabilities. However, it remains unclear whether analogous differences exist between individual penalty takers, and if specialising in penalty taking affects the occurrence of differences between individuals. The present study examined individual differences in penalty shot speed and accuracy for specialists in penalty taking versus non-specialists. Expert specialist field hockey drag flickers and equivalently skilled non-specialists performed drag flicks towards predetermined targets placed in the face of a standard field hockey goal. Comparisons in shot speed and accuracy were made at a group level (specialists vs. non-specialists) as well as between individuals. Results revealed differences in both speed and accuracy between specialists, but only differences in speed between non-specialists. Specialists generated significantly greater shot speed than non-specialists (P < .001) and were more accurate to some, but not all, targets (top left, P .006, bottom left P .001). In addition, it was found that in specialists increasing practice correlated with decreasing accuracy. This may indicate that excessive practice could potentially reduce a specialist’s accuracy in shooting towards specific targets.  相似文献   

17.
Predictors of scoring accuracy: ice hockey wrist shot mechanics   总被引:1,自引:0,他引:1  
The purpose of this study was to identify the stationary “wrist shot” technique (movement patterns) of the ice hockey stick that corresponds to the accuracy of puck trajectory. A total of 25 subjects participated in this study, ranging from high to low caliber players. Each performed ten successful wrist shots at four targets (two top corners, two bottom corners). Performances were evaluated by recording the movements of the stick’s shaft and blade and of the puck with a 3D motion capture system at 240 Hz. Kinematics of the shaft and blade of the hockey stick were examined using a multiple regression analysis to predict accuracy scores. In general, the results indicated that accuracy corresponded to release parameters (both puck release orientation and velocity), shaft bending and change in blade orientations; though, parameter weighting differed substantially for top versus bottom targets. Future studies are warranted to identify the whole body kinematic patterns associated with the hockey stick kinematics.  相似文献   

18.
The purpose of this study was to identify joint angular kinematics that corresponds to shooting accuracy in the stationary ice hockey wrist shot. Twenty-four subjects participated in this study, each performing 10 successful shots on four shooting targets. An eight-camera infra-red motion capture system (240 Hz), along with passive reflective markers, was used to record motion of the joints, hockey stick, and puck throughout the performance of the wrist shot. A multiple regression analysis was carried out to examine whole-body kinematic variables with accuracy scores as the dependent variable. Significant accuracy predictors were identified in the lower limbs, torso and upper limbs. Interpretation of the kinematics suggests that characteristics such as a better stability of the base of support, momentum cancellation, proper trunk orientation and a more dynamic control of the lead arm throughout the wrist shot movement are presented as predictors for the accuracy outcome. These findings are substantial as they not only provide a framework for further analysis of motor control strategies using tools for accurate projection of objects, but more tangibly they may provide a comprehensive evidence-based guide to coaches and athletes for planned training to improve performance.  相似文献   

19.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

20.
The purpose of this study was to examine the interaction of players’ skill level, body strength, and sticks of various construction and stiffness on the performance of the slap and wrist shots in ice hockey. Twenty male and twenty female subjects were tested. Ten of each gender group were considered skilled and ten unskilled. In addition to general strength tests, each subject performed the slap and wrist shots with three stick shafts of different construction and stiffness. Shot mechanics were evaluated by simultaneously recording ground reaction forces from a force plate, stick movement and bending from high speed filming and peak puck velocity from a radar gun. Data were analysed with a 4-way repeated measures ANOVA for several dependent variables including peak puck velocity, peak Z (vertical) force, peak bending and stick to ground angles, peak angular deflection of the shaft, and hand placement on the stick. The results indicated that: 1) the slap shot was much faster than the wrist shot corresponding to greater vertical loading force, stick bending, and greater width of the hand placement; 2) the puck velocity was influenced by skill level and body strength but not stick type; and, 3) that skilled players were able to generate more vertical force and bend of the stick, in part, by adjusting their hand positions on the stick. Further studies are needed to address the specific influence of body strength and skill on the techniques of these shots and in relation to stick material and construction properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号