首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to assess the sensitivity of the lactate minimum speed test to changes in endurance fitness resulting from a 6 week training intervention. Sixteen participants (mean +/- s :age 23 +/- 4 years;body mass 69.7 +/- 9.1 kg) completed 6 weeks of endurance training. Another eight participants (age 23 +/- 4 years; body mass 72.7 +/-12.5 kg) acted as non-training controls. Before and after the training intervention, all participants completed: (1) a standard multi-stage treadmill test for the assessment of VO 2max , running speed at the lactate threshold and running speed at a reference blood lactate concentration of 3 mmol.l -1 ; and (2) the lactate minimum speed test, which involved two supramaximal exercise bouts and an 8 min walking recovery period to increase blood lactate concentration before the completion of an incremental treadmill test. Additionally, a subgroup of eight participants from the training intervention completed a series of constant-speed runs for determination of running speed at the maximal lactate steady state. The test protocols were identical before and after the 6 week intervention. The control group showed no significant changes in VO 2max , running speed at the lactate threshold, running speed at a blood lactate concentration of 3 mmol.l -1 or the lactate minimum speed.In the training group, there was a significant increase in VO 2max (from 47.9 +/- 8.4 to 52.2 +/- 2.7 ml.kg -1 .min -1 ), running speed at the maximal lactate steady state (from 13.3 +/- 1.7 to 13.9 +/- 1.6 km.h -1 ), running speed at the lactate threshold (from 11.2 +/- 1.8 to 11.9 +/- 1.8 km.h -1 ) and running speed at a blood lactate concentration of 3 mmol.l -1 (from 12.5 +/- 2.2 to 13.2 +/- 2.1 km.h -1 ) (all P ? 0.05). Despite these clear improvements in aerobic fitness, there was no significant difference in lactate minimum speed after the training intervention (from 11.0 +/- 0.7 to 10.9 +/- 1.7 km.h -1 ). The results demonstrate that the lactate minimum speed,when assessed using the same exercise protocol before and after 6 weeks of aerobic exercise training, is not sensitive to changes in endurance capacity.  相似文献   

2.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1+/-6.7 years, VO2max 52.0+/-7.9 ml x kg(-1) x min(-1)) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a 'U-shaped' blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0+/-1.4 km x h(-1)) was significantly slower than running speed at the lactate threshold (12.4+/-1.7 km x h(-1)) (P < 0.05), but there were no significant differences in VO2, heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-to-pyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

3.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1 +/- 6.7 years, VO 2max 52.0 +/- 7.9 ml kg -1 min -1 ) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a ‘U-shaped’ blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0 +/- 1.4 km h -1 ) was significantly slower than running speed at the lactate threshold (12.4 +/- 1.7 km h -1 ) (P < 0.05), but there were no significant differences in VO 2 , heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-topyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

4.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

5.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake (VO2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0 mmol x l(-1) were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5 km x h(-1), where the change in blood lactate concentration between 10 and 20 min was < 0.5 mmol x l(-1). Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3 km x h(-1), P < 0.01), once the data were expressed relative to percent peak VO2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P > 0.05). The running speed and percent peak VO2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5 mmol x l(-1) (P > 0.05), but were both lower than those at the 4.0 mmol x l(-1) concentration (P < 0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak VO2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5 mmol x l(-1) measured during an incremental treadmill test in boys and girls.  相似文献   

6.
It is common for the physiological working capacity of a triathlete when cycling and running to be assessed on two separate days. The aim of this study was to establish whether an incremental running test to exhaustion has a negative effect after a 5 h recovery from an incremental cycling test. Eight moderately trained triathletes (age, 26.2 +/- 3.4 years; body mass, 67.3 +/- 9.1 kg; VO2max when cycling, 59 +/- 13 ml x kg x min(-1); mean +/- s) completed an incremental running test 5 h after an incremental cycling test (fatigue) as well as an incremental running test without previous activity (control). Maximum running speed, maximal oxygen uptake (VO2max) and the lactate threshold were determined for each incremental running test and correlated with the average speed during a 5 km run, which was performed immediately after a 20 km cycling time-trial, as in a sprint triathlon. There were no significant differences in maximum running speed, VO2max or the lactate threshold in either incremental running test (control or fatigue). Furthermore, good agreement was found for each physiological variable in both the control and fatigue tests. For the fatigue test, there were significant correlations between the average speed during a 5 km run and both VO2max expressed in absolute terms (r = 0.83) and the lactate threshold (r = 0.88). However, maximum running speed correlated most strongly with the average speed during a 5 km run (r = 0.96). The results of this study indicate that, under controlled conditions, an incremental running test can be performed successfully 5 h after an incremental cycling test to exhaustion. Also, the maximum running speed achieved during an incremental running test is the variable that correlates most strongly with the average running speed during a 5 km run after a 20 km cycling time-trial in well-trained triathletes.  相似文献   

7.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

8.
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass.  相似文献   

9.
The purpose of the present study was to re-examine the relationship between deep body temperature and relative exercise intensity, during running rather than cycling (Saltin and Hermansen, 1966). Twenty male competitive and recreational distance runners, aged 22 + 0.9 years (mean +/- sx), were selected to form two groups, one with high maximal oxygen uptake (VO2max) values (72.8 +/- 0.8 ml x kg(-1) x min(-1)) and the other with moderate values (59.4 +/- 0.7 ml x kg(-1) x min(-1)). The participants completed two 60 min constant-paced treadmill runs at a common speed (absolute intensity) of 10.5 km x h(-1) and at a relative exercise intensity at a speed equivalent to 65% of VO2max. During the relative exercise intensity trial, no differences were found in rectal temperature, skin temperature or heart rate between groups. However, when running at the common speed, differences were identified in rectal temperature. At 60 min, rectal temperature was 37.70 +/- 0.19 degrees C and 38.19 +/- 0.11 degrees C for the high and moderate VO2max groups, respectively (P < 0.05). Sweat lost was significantly higher in the moderate VO2max group (moderate: 1.05 +/- 0.06 kg x h(-1); high: 0.82 +/- 0.08 kg x h(-1); P < 0.05). Heart rates were also different between groups over the first 20 min during the common speed trial (P < 0.05). The results of the present study support the findings of Saltin and Hermansen (1966), in that the set-point at which temperature is maintained is related to the relative exercise intensity.  相似文献   

10.
The aims of the study were to modify the training impulse (TRIMP) method of quantifying training load for use with intermittent team sports, and to examine the relationship between this modified TRIMP (TRIMP(MOD)) and changes in the physiological profile of team sport players during a competitive season. Eight male field hockey players, participating in the English Premier Division, took part in the study (mean+/-s: age 26+/-4 years, body mass 80.8+/-5.2 kg, stature 1.82+/-0.04 m). Participants performed three treadmill exercise tests at the start of the competitive season and mid-season: a submaximal test to establish the treadmill speed at a blood lactate concentration of 4 mmol . l(-1); a maximal incremental test to determine maximal oxygen uptake ([V]O(2max)) and peak running speed; and an all-out constant-load test to determine time to exhaustion. Heart rate was recorded during all training sessions and match-play, from which TRIMP(MOD) was calculated. Mean weekly TRIMP(MOD) was correlated with the change in [V]O(2max) and treadmill speed at a blood lactate concentration of 4 mmol x l(-1) from the start of to mid-season (P<0.05). The results suggest that TRIMP(MOD) is a means of quantifying training load in team sports and can be used to prescribe training for the maintenance or improvement of aerobic fitness during the competitive season.  相似文献   

11.
To examine the activity profile and physiological demands of top-class soccer refereeing, we performed computerized time-motion analyses and measured the heart rate and blood lactate concentration of 27 referees during 43 competitive matches in the two top Danish leagues. To relate match performance to physical capacity and training, several physiological tests were performed before and after intermittent exercise training. Total distance covered was 10.07+/-0.13 km (mean +/- s(x)), of which 1.67+/-0.08 km was high-intensity running. High-intensity running and backwards running decreased (P < 0.05) in the second half. Mean heart rate was 162+/-2 beats min(-1) (85+/-1% of maximal heart rate) and the mean blood lactate concentration was 4.9+/-0.3 (range 1.7-14.0) mmol x l(-1). The amount of high-intensity running during a match was related to the Yo-Yo intermittent recovery test (r2 = 0.57; P<0.05) and the 12 min run (r2 = 0.21; P<0.05). After intermittent training (n = 8), distance covered during high-intensity running was greater (2.06+/-0.13 vs 1.69+/-0.08 km; P< 0.05) and mean heart rate was lower (159+/-1 vs 164+/-2 beats x min(-1); P< 0.05) than before training. The results of the present study demonstrate that: (1) top-class soccer referees have significant aerobic energy expenditure throughout a game and episodes of considerable anaerobic energy turnover; (2) the ability to perform high-intensity running is reduced towards the end of matches; (3) the Yo-Yo intermittent recovery test can be used to evaluate referees' match performance; and (4) intense intermittent exercise training improves referees' performance capacity during a game.  相似文献   

12.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.  相似文献   

13.
Exercise intensity and metabolic response in singles tennis   总被引:5,自引:0,他引:5  
The aim of this study was to determine exercise intensity and metabolic response during singles tennis play. Techniques for assessment of exercise intensity were studied on-court and in the laboratory. The on-court study required eight State-level tennis players to complete a competitive singles tennis match. During the laboratory study, a separate group of seven male subjects performed an intermittent and a continuous treadmill run. During tennis play, heart rate (HR) and relative exercise intensity (72 +/- 1.9% VO2max; estimated from measurement of heart rate) remained constant (83.4 +/- 0.9% HRmax; mean +/- s(x)) after the second change of end. The peak value for estimated play intensity (1.25 +/- 0.11 steps x s(-1); from video analysis) occurred after the fourth change of end (P< 0.005). Plasma lactate concentration, measured at rest and at the change of ends, increased 175% from 2.13 +/- 0.32 mmol x l(-1) at rest to a peak 5.86 +/- 1.33 mmol x l(-1) after the sixth change of end (P < 0.001). A linear regression model, which included significant terms for %HRmax (P< 0.001), estimated play intensity (P < 0.001) and subject (P < 0.00), as well as a %HRmax subject interaction (P < 0.05), accounted for 82% of the variation in plasma lactate concentration. During intermittent laboratory treadmill running, % VO2peak estimated from heart rate was 17% higher than the value derived from the measured VO2 (79.7 +/- 2.2% and 69.0 +/- 2.5% VO2peak respectively; P< 0.001). The %VO2peak was estimated with reasonable accuracy during continuous treadmill running (5% error). We conclude that changes in exercise intensity based on measurements of heart rate and a time-motion analysis of court movement patterns explain the variation in lactate concentration observed during singles tennis, and that measuring heart rate during play, in association with preliminary fitness tests to estimate VO2, will overestimate the aerobic response.  相似文献   

14.
Factors influencing physiological responses to small-sided soccer games   总被引:3,自引:2,他引:1  
The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 +/- 8.6 kg, stature 1.79 +/- 0.05 m, age 24.5 +/- 4.1 years, VO(2max) 56.3 +/- 4.8 ml x kg(-1) x min(-1)). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 +/- 5% of maximal heart rate, blood lactate concentration was 3.4 +/- 1.0 mmol x l(-1), and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 +/- 2% of maximal heart rate, blood lactate concentration was 6.5 +/- 1.5 mmol x l(-1), and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

15.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

16.
The aims of this study were to describe and determine the test-retest reliability of an exercise protocol, the Loughborough Intermittent Shuttle Test (the LIST), which was designed to simulate the activity pattern characteristic of the game of soccer. The protocol consisted of two parts: Part A comprised a fixed period of variable-intensity shuttle running over 20 m; Part B consisted of continuous running, alternating every 20 m between 55% and 95% VO2max, until volitional fatigue. Seven trained games players (age 21.5+/-0.9 years, height 182+/-2 cm, body mass 80.1+/-3.6 kg, VO2max 59.0+/-1.9 ml x kg(-1) x min(-1); mean +/- s(x)) performed the test on two occasions (Trial 1 and Trial 2), at least 7 days apart, to determine the test-retest reliability of the sprint times and running capacity. The physiological and metabolic responses on both occasions were also monitored. The participants ingested water ad libitum during the first trial, and were then prescribed the same amount of water during the second trial. The 15 m sprint times during Trials 1 and 2 averaged 2.42+/-0.04 s and 2.43+/-0.04 s, respectively. Run time during Part B was 6.3+/-2.0 min for Trial 1 and 6.1+/-1.3 min for Trial 2. The 95% limits of agreement for sprint times and run times during Part B were -0.14 to 0.12 s and -3.19 to 2.16 min respectively. There were no differences between trials for heart rate, rating of perceived exertion, body mass change during exercise, or blood lactate and glucose concentrations during the test. Thus, we conclude that the sprint times and the Part B run times were reproducible within the limits previously stated. In addition, the activity pattern and the physiological and metabolic responses closely simulated the match demands of soccer.  相似文献   

17.
The effects of antioxidant diet supplements on blood lactate concentration and on the aerobic and anaerobic thresholds and their adaptations to training were analysed. Fifteen amateur male athletes were randomly assigned to either a placebo group or an antioxidant-supplemented group (90 days supplementation with 500 mg x day(-1) of vitamin E and 30 mg x day(-1) of beta-carotene, and the last 15 days also with 1 g x day(-1) of vitamin C). Before and after the antioxidant supplements, the sportsmen performed a maximal exercise test on a cycle ergometer and maximal and submaximal physiological parameters were assessed together with blood lactate concentration. Maximal oxygen uptake (VO(2max)), maximal blood lactate concentration, and the maximal workload attained rose significantly in both groups after the 3 months of training. At the end of the study, maximal blood lactate concentration was lower in the group that took supplements than in the placebo group. The percentage of VO(2max) attained at the anaerobic threshold rose significantly in both groups after 3 months of training, although the final value in the supplemented group was higher than that in the placebo group. Antioxidant diet supplements induced lower increases in blood lactate concentration after a maximal exercise test and could improve the efficiency in which aerobic energy is obtained.  相似文献   

18.
The aim of this study was to examine heart rate, blood lactate concentration and estimated energy expenditure during a competitive rugby league match. Seventeen well-trained rugby league players (age, 23.9 +/- 4.1 years; VO2max, 57.9 +/- 3.6 ml x kg(-1) x min(-1); height, 1.82 +/- 0.06 m; body mass, 90.2 +/- 9.6 kg; mean +/- s) participated in the study. Heart rate was recorded continuously throughout the match using Polar Vantage NV recordable heart rate monitors. Blood lactate samples (n = 102) were taken before the match, after the warm-up, at random stoppages in play, at half time and immediately after the match. Estimated energy expenditure during the match was calculated from the heart rate-VO2 relationship determined in laboratory tests. The mean team heart rate (n = 15) was not significantly different between halves (167 +/- 9 vs 165 +/- 11 beats x min(-1)). Mean match intensity was 81.1 +/- 5.8% VO2max. Mean match blood lactate concentration was 7.2 +/- 2.5 mmol x l(-1), with concentrations for the first half (8.4 +/- 1.8 mmol x l(-1)) being significantly higher than those for the second half (5.9 +/- 2.5 mmol x l(-1)) (P<0.05). Energy expenditure was approximately 7.9 MJ. These results demonstrate that semi-professional rugby league is a highly aerobic game with a considerable anaerobic component requiring high lactate tolerance. Training programmes should reflect these demands placed on players during competitive match-play.  相似文献   

19.
The aims of this study were to determine if there are significant kinematic changes in running pattern after intense interval workouts, whether duration of recovery affects running kinematics, and whether changes in running economy are related to changes in running kinematics. Seven highly trained male endurance runners (VO2max = 72.3+/-3.3 ml x kg(-1) x min(-1); mean +/- s) performed three interval running workouts of 10 x 400 m at a speed of 5.94+/-0.19 m x s(-1) (356+/-11.2 m x min(-1)) with a minimum of 4 days recovery between runs. Recovery of 60, 120 or 180 s between each 400 m repetition was assigned at random. Before and after each workout, running economy and several kinematic variables were measured at speeds of 3.33 and 4.47 m x s(-1) (200 and 268 m x min(-1)). Speed was found to have a significant effect on shank angle, knee velocity and stride length (P < 0.05). Correlations between changes pre- and post-test for VO2 (ml x kg(-1) x min(-1)) and several kinematic variables were not significant (P > 0.05) at both speeds. In general, duration of recovery was not found to adversely affect running economy or the kinematic variables assessed, possibly because of intra-individual adaptations to fatigue.  相似文献   

20.
It has previously been shown that measurement of the critical speed is a non-invasive method of estimating the blood lactate response during exercise. However, its validity in children has yet to be demonstrated. The aims of this study were: (1) to verify if the critical speed determined in accordance with the protocol of Wakayoshi et al. is a non-invasive means of estimating the swimming speed equivalent to a blood lactate concentration of 4 mmol x l(-1) in children aged 10-12 years; and (2) to establish whether standard of performance has an effect on its determination. Sixteen swimmers were divided into two groups: beginners and trained. They initially completed a protocol for determination of speed equivalent to a blood lactate concentration of 4 mmol x l(-1). Later, during training sessions, maximum efforts were swum over distances of 50, 100 and 200 m for the calculation of the critical speed. The speeds equivalent to a blood lactate concentration of 4 mmol x l(-1) (beginners = 0.82 +/- 0.09 m x s(-1), trained = 1.19 +/- 0.11 m x s(-1); mean +/- s) were significantly faster than the critical speeds (beginners = 0.78 +/- 0.25 m x s(-1), trained = 1.08 +/- 0.04 m x s(-1)) in both groups. There was a high correlation between speed at a blood lactate concentration of 4 mmol x l(-1) and the critical speed for the beginners (r= 0.96, P < 0.001), but not for the trained group (r= 0.60, P> 0.05). The blood lactate concentration corresponding to the critical speed was 2.7 +/- 1.1 and 3.1 +/- 0.4 mmol x l(-1) for the beginners and trained group respectively. The percent difference between speed at a blood lactate concentration of 4 mmol x l(-1) and the critical speed was not significantly different between the two groups. At all distances studied, swimming performance was significantly faster in the trained group. Our results suggest that the critical speed underestimates swimming intensity corresponding to a blood lactate concentration of 4 mmol x l(-1) in children aged 10-12 years and that standard of performance does not affect the determination of the critical speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号