首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Abstract

Cold water immersion and compression garments are now popular strategies for post-exercise recovery. However, little information exists on the effectiveness of these strategies to minimize muscle damage, or any impact they may have on biomarker clearance after team sport competition. The main aim of this study was to investigate the time course of muscle damage markers and inflammatory cytokines during basketball tournament play. We also wished to examine if cold water immersion and compression recovery strategies ameliorate any post-game increases of these biomarkers, compared with traditional refuelling and stretching routines.

Male basketball players (age 19.1 years, s=2.1; height 1.91 m, s=0.09; body mass 87.9 kg, s=15.1) were asked to compete in a three-day tournament playing one game each day. Players were assigned to one of three recovery treatments: carbohydrate+stretching (control, n=9), cold-water immersion at 11°C for 5×1 min (n=10); or full-leg compression at 18 mmHg for ~18 h (n=10). Players received their treatment after each game on three consecutive days. Venous blood samples were assayed before the tournament and at 10 min, 6 h, and 24 h after each game for concentrations of the muscle damage markers fatty-acid binding protein (FABP), creatine kinase, and myoglobin; interleukin-6 (IL-6) and interleukin-10 (IL-10) were also assayed. Inferences were based on log-transformed concentrations.

Post-game increases in damage markers were clear and very large for FABP after the cold water immersion (3.81 ×/÷ 1.19, factor mean ×/÷ factor s), compression (3.93 ×/÷ 1.46), and control (4.04 ×/÷ 1.19) treatments. Increases in myoglobin were also clear and very large after the cold water immersion (3.50 ×/÷ 1.35), compression (3.66 ×/÷ 1.48), and control (4.09 ×/÷ 1.18) treatments. Increases in creatine kinase were clear but small after the cold water immersion (1.30 ×/÷ 1.03), compression (1.25 ×/÷ 1.39), and control (1.42 ×/÷ 1.15) treatments, with small or unclear differences between treatments. There were clear moderate to large post-game increases in IL-6 for cold water immersion (2.75 ×/÷ 1.37), compression (3.43 ×/÷ 1.52), and control (3.47 ×/÷ 1.49). Increases in IL-10 were clear and moderate for cold water immersion (1.75 ×/÷ 1.43), but clear and large after the compression (2.46 ×/÷ 1.79) and control (2.32 ×/÷ 1.41) treatments. Small decreases in IL-6 and IL-10 were observed with cold water immersion compared with the compression and control treatments, with unclear effects between treatments over the tournament. There was no clear benefit from any recovery treatment post-game, as the differences between treatments for all biomarker measures were small or unclear. Pre- to post-tournament increases in FABP, myoglobin, and creatine kinase were clearly small to moderate. There were also small to moderate differences between cold water immersion and the compression (0.85 ×/÷ 1.21) and control (0.76 ×/÷ 1.26) treatments for the post-tournament measures compared with pre-tournament. Pre- to post-tournament changes for IL-6 and IL-10 were unclear, as were the differences between treatments for both cytokines.

Tournament basketball play elicits modest elevations of muscle damage markers, suggesting disruption of myocyte membranes in well-trained players. The magnitude of increase in muscle damage markers and inflammatory cytokines post-game ranged from small for creatine kinase, to large for IL-6 and IL-10, to very large for FABP and myoglobin. Cold water immersion had a small to moderate effect in decreasing FABP and myoglobin concentrations after a basketball tournament compared with the compression and control treatments.  相似文献   

2.
Abstract

The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8–10 repetitions/set, 65–70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4–6 repetitions/set, 85–90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.  相似文献   

3.
Abstract

It is a common requirement in tournament scenarios for athletes to compete multiple times in a relatively short time period, with insufficient recovery time not allowing full restoration of physical performance. This study aimed to develop a greater understanding of the physiological stress experienced by athletes in a tournament scenario, and how a commonly used recovery strategy, cold water immersion (CWI), might influence these markers. Twenty-one trained male games players (age 19?±?2; body mass 78.0?±?8.8?kg) were randomised into a CWI group (n?=?11) or a control group (n?=?10). To simulate a tournament, participants completed the Loughborough Intermittent Shuttle Test (LIST) on three occasions in five days. Recovery was assessed at specific time points using markers of sprint performance, muscle function, muscle soreness and biochemical markers of damage (creatine kinase, CK), inflammation (IL-6 and C-Reactive Protein) and oxidative stress (lipid hydroperoxides and activity of 6 lipid-soluble antioxidants). The simulated tournament was associated with perturbations in some, but not all, markers of physiological stress and recovery. Cold water immersion was associated with improved recovery of sprint speed 24?h after the final LIST (ES?=?0.83?±?0.59; p?=?.034) and attenuated the efflux of CK pre- and post-LIST 3 (p?<?.01). The tournament scenario resulted in an escalation of physiological stress that, in the main, cold water immersion was ineffective at managing. These data suggest that CWI is not harmful, and provides limited benefits in attenuating the deleterious effects experienced during tournament scenarios.  相似文献   

4.
BackgroundVascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has become a hot issue worldwide. Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities; however, the specific mechanism has remained inconclusive. And recent studies found that neurogranin (Ng) is a potential biomarker for cognitive impairment. This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment.MethodsTo test this hypothesis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system was utilized to construct a strain of Ng conditional knockout (Ng cKO) mice, and bilateral common carotid artery stenosis (BCAS) surgery was performed to prepare the model. In Experiment 1, 2-month-old male and female transgenic mice were divided into a control group (wild-type littermate, n = 9) and a Ng cKO group (n = 9). Then, 2-month-old male and female C57BL/6 mice were divided into a sham group (C57BL/6, n = 12) and a BCAS group (n = 12). In Experiment 2, 2-month-old male and female mice were divided into a sham group (wild-type littermate, n = 12), BCAS group (n = 12), swim group (n = 12), BCAS + Ng cKO group (n = 12), and swim + Ng cKO group (n = 12). Then, 7 days after BCAS, mice were given swimming training for 5 weeks (1 week for adaptation and 4 weeks for training, 5 days a week, 60 min a day). After intervention, laser speckle was used to detect cerebral blood perfusion in the mice, and the T maze and Morris water maze were adopted to test their spatial memory. Furthermore, electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca2+ pathway-related proteins, respectively. Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage, inflammation, and white matter injury.ResultsThe figures showed that spatial memory impairment was detected in Ng cKO mice, and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice. Regular swimming training improved the spatial memory impairment of BCAS mice. This was achieved by preventing long-term potential damage and reversing the decline of Ca2+ signal transduction pathway-related proteins. At the same time, the results suggested that swimming also led to improvements in neuronal death, inflammation, and white matter injury induced by CCH. Further study adopted the use of Ng cKO transgenic mice, and the results indicated that the positive effects of swimming training on cognitive impairments, synaptic plasticity, and related pathological changes caused by CCH could be abolished by the knockout of Ng.ConclusionSwimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH, thereby ameliorating the spatial memory impairment of vascular cognitive impairment.  相似文献   

5.
Abstract

This study investigated whether hot pack treatment could provide prophylactic effects on muscle damage induced by eccentric exercise of the wrist extensors. Twenty-eight healthy men (age 21±1 years, weight 65±16 kg, height 171±6 cm) were randomly placed into hot pack (n = 14) and control (n = 14) groups. All participants performed an exercise consisting of 300 maximal eccentric contractions of the wrist extensors of the non-dominant arm using an isokinetic dynamometer. A hot pack was applied for 20 min to the wrist extensors of the exercised arm before the exercise for the hot pack group. The control group received no treatment before the exercise. Measured variables included pain intensity assessed by a visual analogue scale and a modified Likert's scale, cold thermal pain threshold, pressure pain threshold (PPT), range of motion in active wrist flexion (ROM-AF) and extension (ROM-AE), range of motion in passive wrist flexion (ROM-PF) and extension (ROM-PE), grip strength, and wrist extension strength. Changes in these variables before, immediately after, and 1 to 8 days following the exercise were compared between groups by a two-way repeated measures ANOVA. All outcome measures from both groups (except for the cold thermal pain threshold of the hot pack group) demonstrated a significant change within the first 2–3 days following exercise. Significant differences between groups were only found at a single point in time for PPT, ROM-PF, ROM-PE and ROM-AE, and the changes were smaller for the hot pack group in comparison to the control group. These results suggest that the prophylactic effects of hot pack treatment on eccentric exercise-induced muscle damage of the wrist extensors are limited.  相似文献   

6.
Abstract

Introduction: In response to fatigue during an exhaustive treadmill run, forefoot runner’s muscles must adapt to maintain their pace. From a neuromuscular control perspective, certain muscles may not be able to sustain the force to meet the run’s demands; thus, there may be alternative muscle coordination in the lower extremity that allows for continued running for an extended period of time. The aim of this study was to quantify the change in muscle coordination during a prolonged run in forefoot runners.

Methods: Thirteen forefoot runners performed exhaustive treadmill runs (mean duration: 15.4?±?2.2?min). The muscle coordination of seven lower extremity muscles was quantified using a high-resolution time–frequency analysis together with a pattern recognition algorithm.

Results: The mean EMG intensity for the lateral and medial gastrocnemius muscles decreased with the run (p?=?0.02; 0.06). The weight factors of the second principal pattern decrease by 128.01% by the end of run (p?=?0.05, Cohen’s d?=?0.42) representing a relatively greater biceps femoris activation in midstance but smaller midstance rectus femoris, vastus medialis, triceps surae, and tibialis anterior activation.

Discussion: These results suggest that forefoot runners cannot sustain plantar flexor activation throughout an exhaustive run and change their muscle coordination strategy as a compensation. Understanding the underlying compensation mechanisms humans use to cope with fatigue will help to inform training modalities to enhance these late stage muscle activation strategies for athletes with the goal of improving performance and reducing injury.  相似文献   

7.
PurposeThe aim of this study was to review, systematically, evidence concerning the link between the ACTN3 R577X polymorphism and the rates and severity of non-contact injuries and exercise-induced muscle damage in athletes and individuals enrolled in exercise training programs.MethodsA computerized literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus, from inception until November 2020. All included studies compared the epidemiological characteristics of non-contact injury between the different genotypes of the ACTN3 R577X polymorphism.ResultsOur search identified 492 records. After the screening of titles, abstracts, and full texts, 13 studies examining the association between the ACTN3 genotypes and the rate and severity of non-contact injury were included in the analysis. These studies were performed in 6 different countries (Spain, Japan, Brazil, China, the Republic of Korea, and Italy) and involved a total participant pool of 1093 participants. Of the studies, 2 studies involved only women, 5 studies involved only men, and 6 studies involved both men and women. All the studies included were classified as high-quality studies (≥6 points in the Physiotherapy Evidence Database (PEDro) scale score). Overall, evidence suggests there is an association between the ACTN3 R577X genotype and non-contact injury in 12 investigations. Six studies observed a significant association between ACTN3 R577X polymorphism and exercise induced muscle damage: 2 with non-contact ankle injury, 3 with non-contact muscle injury, and 1 with overall non-contact injury.ConclusionThe present findings support the premise that possessing the ACTN3 XX genotype may predispose athletes to a higher probability of some non-contact injuries, such as muscle injury, ankle sprains, and higher levels of exercise-induced muscle damage.  相似文献   

8.
Abstract

The purpose of this study was to establish if vertical stiffness was greater in professional Australian rules footballers who sustained a lower limb skeletal muscle strain compared to those who did not, and to establish if a relationship between age, or training history, and vertical stiffness existed. Thirty-one participants underwent weekly rebound jump testing on a force platform over two seasons. Vertical stiffness was calculated for injured players and the uninjured cohort 1 and 3 weeks prior to sustaining an injury and at the end of preseason. Eighteen athletes were in the “uninjured” cohort and 13 in the “injured” cohort. No significant difference in vertical stiffness was observed between groups (P = 0.18 for absolute stiffness; P = 0.08 for stiffness relative to body mass), within groups (P = 0.83 and P = 0.88, respectively) or for a time*cohort interaction (P = 0.77 and P = 0.80, respectively). No relationship between age and vertical stiffness existed (r = ?0.06 for absolute and relative stiffness), or training history and vertical stiffness (r = ?0.01 and 0.00 for absolute and relative stiffness, respectively) existed. These results and others lend to suggest that vertical stiffness is not related to lower limb muscle strain injury.  相似文献   

9.
Abstract

Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.  相似文献   

10.
Abstract

Basketball incorporates intense eccentric muscle activity that induces muscle microtrauma and an inflammatory response. This study investigated time-dependent inflammatory and performance responses during a weekly microcycle after a basketball match. Twenty elite-standard players underwent a trial that comprised a match followed by a 6-day simulated in-season microcycle. The trial was preceded by a control condition that did not have a match. Blood sampling and tests of maximal-intensity exercise performance and muscle damage occurred before each condition, immediately after the match and daily thereafter for 6 consecutive days. The match induced marked increases in heart rate, lactate, ammonia, glucose, non-esterified fatty acids and triglycerides. Performance deteriorated for 24–48 h after the match, whereas knee flexor and extensor soreness increased for 48 and 24 h post-match, respectively. Inflammatory (leukocytes, C-reactive protein, creatine kinase activity, adhesion molecules, cortisol, uric acid and cytokines) and oxidative stress (malondialdehyde, protein carbonyls, oxidised glutathione, antioxidant capacity, catalase and glutathione peroxidase) markers increased for ~24 h and subsided thereafter. Reduced glutathione declined for 24 h after exercise. These results suggest that a basketball match elicits moderate and relatively brief (~24–48 h) inflammatory responses, is associated with marked but short-lived performance deterioration, but is less stressful than other intermittent-type sports.  相似文献   

11.
Abstract

In this study, we examined indirect markers of muscle damage and muscle soreness following a 50-km cross-country ski race completed in 2 h and 57 min to 5 h and 9 min by 11 moderately trained male university students. Maximal strength of the knee extensors, several blood markers of muscle damage and inflammation, and muscle soreness (visual analog scale: 0 = “no pain”, 50 mm = “unbearably painful”) were measured one day before, immediately after, and 24, 48, 72, and 144 h after the race. Changes in the measures over time were analysed using one-way repeated-measures analysis of variance and a Fisher's post-hoc test. Maximal strength of the knee extensors decreased significantly (P<0.05) immediately after the race (mean ?27%, s=6), but returned to pre-exercise values within 24 h of the race. All blood markers increased significantly (P<0.05) following the race, peaking either immediately (lactate dehydrogenase: 253.7 IU · l?1, s=13.3; myoglobin: 476.4 ng · ml?1, s=85.5) or 24 h after the race (creatine kinase: 848.0 IU · l?1, s=151.9; glumatic oxaloacetic transaminase: 44.3 IU · l?1, s=4.2; aldolase: 10.0 IU · l?1, s=1.3; C-reactive protein: 0.36 IU · l?1, s=0.08). Muscle soreness developed in the leg, arm, shoulder, back, and abdomen muscles immediately after the race (10–30 mm), but decreased after 24 h (<15 mm), and disappeared 48 h after the race. These results suggest that muscle damage induced by a 50-km cross-country ski race is mild and recovery from the race does not take long.  相似文献   

12.
Abstract

To assess the effect of cold water immersion and active recovery on thermoregulation and repeat cycling performance in the heat, ten well-trained male cyclists completed five trials, each separated by one week. Each trial consisted of a 30-min exercise task, one of five 15-min recoveries (intermittent cold water immersion in 10°C, 15°C and 20°C water, continuous cold water immersion in 20°C water or active recovery), followed by 40 min passive recovery, before repeating the 30-min exercise task. Recovery strategy effectiveness was assessed via changes in total work in the second exercise task compared with that in the first. Following active recovery, a mean 4.1% (s = 1.8) less total work (P = 0.00) was completed in the second than in the first exercise task. However, no significant differences in total work were observed between any of the cold water immersion protocols. Core and skin temperature, blood lactate concentration, heart rate, rating of thermal sensation, and rating of perceived exertion were recorded. During both exercise tasks there were no significant differences in blood lactate concentration between interventions; however, following active recovery blood lactate concentration was significantly lower (P < 0.05; 2.0 ± 0.8 mmol · l?1) compared with all cold water immersion protocols. All cold water immersion protocols were effective in reducing thermal strain and were more effective in maintaining subsequent high-intensity cycling performance than active recovery.  相似文献   

13.
Abstract

Mountain biking (MB), unlike road cycling (RC) involves exposure to ground impact bone strain and requires upper-body muscle forces to maintain stability over uneven terrain and therefore may have differential effects on radial bone structure and strength. This study aimed to compare serum bone turnover marker concentration, 1-repetition maximum muscle strength and the radial proximal (diaphysis) and distal (metaphysis) bone structure [bone mineral content, total and cortical area (CoA), density and thickness, diameter and circumference], strength strain indices and muscle cross-sectional area (MCSA) using peripheral quantitative computed tomography (pQCT) between 30 male cyclists (18–34 years) MB (n = 10), RC (n = 10) and non-athletes controls (CON, n = 10). Differences were assessed by ANOVA and an ANCOVA (adjusting for body mass and height) where appropriate. MB radii were characterised by significantly stronger (14–16%), denser (9–27%) and larger (10%) metaphyses and stronger (22–23%) and larger (11–13%) diaphyses compared to RC and CON. RC had significantly 7% higher strength indices and 4% greater CoA and thickness than CON at the diaphysis, with no differences for other bone measurements. Serum C-terminal telopeptides of type-1 collagen concentration (bone resorption marker) was higher in RC than MB (p < 0.05) and above the age-reference range. MCSA and strength were greater in MB than RC (p < 0.05). Muscle forces generated during RC appear to produce an osteogenic stimulus to increase radial bone strength indices with minimal improvement in bone structure. However greater resorptive activity in RC suggests inadequate loading to support bone maintenance. In conclusion, bone loading, muscle size and strength of MB are superior to RC.  相似文献   

14.
Abstract

The purpose of this study was (a) to assess lactate accumulation during isometric exercise, and to quantify the shifts in accumulation following isometric training; and (b) to relate any training-induced changes in lactate accumulation to reductions in resting blood pressure. Eleven male participants undertook isometric training for a 4-week period using bilateral-leg exercise. Training caused reductions in systolic, diastolic, and mean arterial resting blood pressure (of ?4.9 ± 6.3 mmHg, P = 0.01; ?2.6 ± 3.0 mmHg, P = 0.01; and ?2.6 ± 2.3 mmHg, P = 0.001 respectively; mean ± s). These were accompanied by changes in muscle activity, taken as electromyographic activity to reach a given lactate concentration (from 114 ± 22 to 131 ± 27 mV and from 136 ± 25 to 155 ± 34 mV for 3 and 4 mmol · L?1 respectively. Training intensity expressed relative to peak lactate was correlated with reduced resting systolic and mean arterial blood pressure. Training caused significant shifts in lactate accumulation, and reductions in resting blood pressure are strongly related to training intensity, when expressed relative to pre-training peak lactate. This suggests that higher levels of local muscle anaerobiosis may promote the training-induced reductions in resting blood pressure.  相似文献   

15.
Abstract

The increased energy demand that occurs with incremental exercise intensity is met by increases in the oxidation of both endogenous fat and carbohydrate stores up to an intensity of ~70% V˙O2max in trained individuals. However, when exercise intensity increases beyond this workload, fat oxidation rates decline, both from a relative and absolute perspective. As endogenous glycogen use is accelerated, glycogen stores can become depleted, ultimately resulting in fatigue and the inability to maintain high intensity, submaximal exercise (>70% V˙O2max). Despite a considerable accumulation of knowledge that has been gained over the past half century, the precise mechanism(s) regulating muscle fuel selection and underpinning the aforementioned decline in fat oxidation remain largely unclear. A greater understanding would undoubtedly lead to novel strategies to increase fat utilization and, as such, improve exercise capacity. The present review primarily addresses one of the most prominent theories to explain the phenomenon of diminished fat oxidation during high intensity, submaximal exercise; a reduced availability of muscle free carnitine for mitochondrial fat translocation. This is discussed in the light of recent work in this area taking advantage of the discovery that muscle carnitine content can be increased in vivo in humans. Furthermore, the evidence supporting the recently proposed theory that reduced muscle co-enzyme A availability to several key enzymes in the fat oxidation pathway may also exert a degree of control over muscle fuel selection during exercise is also considered. Strong correlational evidence exists that muscle free carnitine availability is likely to be a key limiting factor to fat oxidation during high intensity, submaximal exercise. However, it is concluded that further intervention studies manipulating the muscle carnitine pool in humans are required to establish a direct causal role. In addition, it is concluded that while a depletion of muscle coenzyme A availability during exercise also offers a viable mechanism for impairing fat oxidation, at present, this remains speculative.  相似文献   

16.
Abstract

The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5–91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.  相似文献   

17.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase (P < 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase (P < 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration (P< 0.01) as well as an increase in creatine kinase (P < 0.01). We suggest that changes in MRI T, signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

18.
This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83–88% of HR maximum. Venous blood samples were collected pre-, post- and 24?h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24?h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p?=?.008) but not on sand (p?=?.611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p?=?.026). No differences in CRP were reported between surfaces (p?>?.05). The HR, RPE and DOMS scores were not significantly different between conditions (p > .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.  相似文献   

19.
Purpose: Acute muscle damage after exercise triggers subsequent regeneration, leading to hypertrophy and increased strength after repeated exercise. It has been debated whether acute exercise-induced muscle damage is altered under various premenopausal estrogen conditions. Acute contraction-induced muscle damage was compared during exogenous (oral contraceptive, OC), endogenous (luteal phase, HI), or low (menses, LO) estrogen in healthy young women aged 21 to 30 years old. Methods: Women (OC, n = 9; HI, n = 9; LO, n = 8; total = 26) performed 1 neuromuscular electrical stimulation (NMES) bout. Soreness, measured via visual analog scale and the Likert Scale of Muscle Soreness for Lower Limb (LSMSLL), quadriceps strength, and plasma myoglobin (Mb), interleukin (IL)-6, IL-8, and granulocyte-colony stimulating factor were measured before and after NMES. Results: NMES performance was similar across groups. Meaningful within-group increases in Mb (effect size [ES] = 1.12) and IL-8 (ES = 0.38) occurred in LO; ES for HI and OC were trivial. ES of the between-group difference in change was moderate for Mb (LO vs. HI = 1.15) and IL-8 (LO vs. HI = 0.86; LO vs. OC = 0.73). 17-β estradiol correlated moderately and negatively with Mb relative change (r = –.52, < .05). LO had ~5% greater strength loss than OC and HI. The mean change score for the LSMSLL 2 days post-NMES was clinically greater in LO than OC or HI. Conclusions: Acute NMES-induced indicators of muscle fiber damage and qualitative muscle soreness may be attenuated during the luteal phase or active OC pill consumption compared with the menstrual phase.  相似文献   

20.
ABSTRACT

In this study, we aimed to clarify the characteristics of neuromuscular function, kinetics, and kinematics of the lower extremity during sprinting in track and field athletes with a history of strain injury. Ten male college sprinters with a history of unilateral hamstring injury performed maximum effort sprint on an athletic track. The electromyographic (EMG) activity of the long head of the biceps femoris (BFlh) and gluteus maximus (Gmax) muscles and three-dimensional kinematic data were recorded. Bilateral comparisons were performed for the EMG activities, pelvic anterior tilt angle, hip and knee joint angles and torques, and the musculotendon length of BFlh. The activity of BFlh in the previously injured limb was significantly lower than that in the uninjured limb during the late-swing phase of sprinting (p < 0.05). However, the EMG activity of Gmax was not significantly different between the previously injured and uninjured limbs. Furthermore, during the late-swing phase, a significantly more flexed knee angle (p < 0.05) and a decrease in BFlh muscle length (p < 0.05) were noted in the injured limb. It was concluded that previously injured hamstring muscles demonstrate functional deficits during the late swing phase of sprinting in comparison with the uninjured contralateral muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号