首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Nine males cycled at 53% (s = 2) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.4°C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50°C (hot) was ingested 30 – 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2°C, s = 0.5; warm trial: 34.4°C, s = 0.5; hot trial: 34.7°C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats · min?1, s = 13; warm trial: 134 beats · min?1, s = 12; hot trial: 139 beats · min?1, s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

2.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

3.
Abstract

In this study, we examine the effect of exercise on the time and flow characteristics of the respiratory cycle profile at the point of volitional exercise termination. Eight males (mean age 29 years, s = 10; body mass 74 kg, s = 7; height 1.75 m, s = 0.04) undertook a cycle test to volitional exhaustion on a cycle ergometer, which allowed peak oxygen uptake ([Vdot]O2peak) to be measured (mean 51 ml · kg?1 · min?1, s = 7). At a later date, two sub-maximal tests to volitional exhaustion were completed in a random order at 76% (s = 6) and 86%[Vdot]O2peak (s = 7). As expected, the magnitude of the respiratory flow and time characteristics varied with the three exercise intensities, as did the point of exercise termination and terminal ventilation rates, which varied from 7 to 27 min and 112 to 132 litres · min?1 respectively. More importantly, however, at exercise termination some of the characteristics were similar, particularly the breathing frequency (at termination 49 breaths · min?1), the ratio between inspiration and total breath time (0.5), and the later occurrence of peak inspiratory flow (0.24 – 0.48 s). The coincident unity of these time and flow profile characteristics at exercise termination illustrates how the integration of timing and flow during breathing influence exercise capacity in non-elite athletes.  相似文献   

4.
Abstract

The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test ([Vdot]O2peak 71.4 ± 3.2 ml · kg?1 · min?1) and four ~40 min laboratory cycling time trials in a heat chamber (34.3°C ± 1.1°C; 41.2% ± 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8°C ± 0.1°C in control, similar in jacket (37.8°C ± 0.3°C) and lower in combined (37.1°C ± 0.2°C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (?16 ± 36 s, ?0.7%; P = 0.35) but was faster for combined precooling (?42 ± 25 s, ?1.8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

5.
Abstract

In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev · min?1. Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous [Vdot]O2 and [Vdot]CO2 measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, sx  = 1.5 at 40 rev · min?1 and 1.8%, sx  = 0.7 at 120 rev · min?1; P = 0.01). Torque production between crank angles of 60° and 150° was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body [Vdot]O2 or [Vdot]CO2. Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, sx  = 0.9 and 25.1%, sx  = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

6.
Abstract

The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19 – 27 years, body mass 65 – 82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22 – 31 years, body mass 74 – 94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21 – 30 years, body mass 64 – 80 kg). Heart rate, oxygen consumption ([Vdot]O2), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml · kg?1 · min?1, 32.1 (s = 12.1) beats · min?1 and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in [Vdot]O2, which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml · kg?1 · min?1. The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.  相似文献   

7.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

8.
Abstract

This study examined the effects of caffeine, co-ingested with a high fat meal, on perceptual and metabolic responses during incremental (Experiment 1) and endurance (Experiment 2) exercise performance. Trained participants performed three constant-load cycling tests at approximately 73% of maximal oxygen uptake ([Vdot]O2max) for 30 min at 20°C (Experiment 1, n = 8) and to the limit of tolerance at 10°C (Experiment 2, n = 10). The 30 min constant-load exercise in Experiment 1 was followed by incremental exercise (15 W · min?1) to fatigue. Four hours before the first test, the participants consumed a 90% carbohydrate meal (control trial); in the remaining two tests, the participants consumed a 90% fat meal with (fat + caffeine trial) and without (fat-only trial) caffeine. Caffeine and placebo were randomly assigned and ingested 1 h before exercise. In both experiments, ratings of perceived leg exertion were significantly lower during the fat + caffeine than fat-only trial (Experiment 1: P < 0.001; Experiment 2: P < 0.01). Ratings of perceived breathlessness were significantly lower in Experiment 1 (P < 0.01) and heart rate higher in Experiment 2 (P < 0.001) on the fat + caffeine than fat-only trial. In the two experiments, oxygen uptake, ventilation, blood [glucose], [lactate] and plasma [glycerol] were significantly higher on the fat + caffeine than fat-only trial. In Experiment 2, plasma [free fatty acids], blood [pyruvate] and the [lactate]:[pyruvate] ratio were significantly higher on the fat + caffeine than fat-only trial. Time to exhaustion during incremental exercise (Experiment 1: control: 4.9, s = 1.8 min; fat-only: 5.0, s = 2.2 min; fat + caffeine: 5.0, s = 2.2 min; P > 0.05) and constant-load exercise (Experiment 2: control: 116 (88 – 145) min; fat-only: 122 (96 – 144) min; fat + caffeine: 127 (107 – 176) min; P > 0.05) was not different between the fat-only and fat + caffeine trials. In conclusion, while a number of metabolic responses were increased during exercise after caffeine ingestion, perception of effort was reduced and this may be attributed to the direct stimulatory effect of caffeine on the central nervous system. However, this caffeine-induced reduction in effort perception did not improve exercise performance.  相似文献   

9.
Abstract

The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness ([Vdot]O2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg · m?2, s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both [Vdot]O2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = ?0.24, P < 0.01 and r = ?0.30, P < 0.01, respectively). In addition, [Vdot]O2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of [Vdot]O2peak and muscle strength, respectively. In conclusion, higher [Vdot]O2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of [Vdot]O2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of [Vdot]O2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.  相似文献   

10.
Abstract

The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption ([Vdot]O2peak) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev · min?1, whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples (~20 μl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev · min?1 at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and [Vdot]O2peak[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l · min?1] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of [Vdot]O2peak (ICC = 0.78; 95% LoA = 0.04 ± 0.50 l · min?1) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

11.
The aims of this study were to examine and compare selected physiological and metabolic responses of wheelchair athletes in two paraplegic racing classes [T3: n?=?8 (lesion levels T1–T7; paraplegics); T4: n?=?9 (lesion levels below T7; paraplegics)] to prolonged exercise. In addition, we describe the responses of three tetraplegic athletes [T2: n?=?3 (lesion levels C6/C7: tetraplegics)]. Twenty athletes completed 90?min of exercise at 75% [Vdot]O2peak on a motorized treadmill adapted for wheelchairs. The mean (±s) heart rates of the T3 and T4 racing classes were 165±2 and 172±6 beats?·?min?1, respectively. For the T4 racing class, heart rate gradually increased during the test (P?<0.05), whereas for the T3 racing class, heart rate reached a plateau after an initial increase. The mean heart rate of the tetraplegics was 114±3 beats?·?min?1. The T3 and T4 classes exhibited similar respiratory exchange ratios, plasma lactate and glucose concentrations throughout the test. For both the T3 and T4 racing class, free fatty acid, glycerol, ammonia, urea and potassium concentrations had increased from resting values by the end of the test (P?<0.05). In conclusion, the results of this study suggest that endurance-trained wheelchair athletes are able to maintain velocities equivalent to the same relative exercise intensity (75% [Vdot]O2peak) for prolonged periods irrespective of lesion level.  相似文献   

12.
Abstract

The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; [Vdot]O2peak 61 ml · kg?1 · min?1, s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70%[Vdot]O2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

13.
Abstract

Squash is a popular racket sport that requires intermittent activity with frequent bursts of near maximal-intensity exercise. Consequently, effective physiological and thermoregulatory responses are important contributors to performance during squash match-play. Controlled field-based simulation protocols have been introduced in a growing number of sports, which allow sports scientists to investigate changes in physiology and the efficacy of various interventions in sport-specific contexts. This study aimed to develop an exercise protocol that simulates the physiological requirements of elite squash match-play. Eight elite junior squash players (age 16.2 ± 0.8 years, height 1.76 ± 0.06 m, body mass 61.3 ± 5.9 kg; mean ± s) completed the following in a randomized order: (1) a squash match against a player of similar standard and (2) a squash-specific incremental exercise protocol (multistage squash test [MST]) followed by the squash simulation protocol (SSP). The multistage squash test was continued for 18.0 ± 1.0 min and elicited near maximal post-MST heart rates, blood lactate concentrations and ratings of perceived exertion (198 ± 9 beats · min?1, 5.7 ± 1.7 mmol · l?1 and 18 ± 1, respectively). The SSP was 12.2 min in length compared with mean game length during competitive matches of 10.0 ± 1.6 min (P = 0.27). Peak heart rates were similar during the SSP and match-play (192 ± 11 and 189 ± 6 beats · min?1, respectively; P = 0.44). Mean exercising heart rates were similar during the SSP (180 ± 8 beats · min?1) and match-play (179 ± 13 beats · min?1; P = 0.73). Peak blood lactate concentrations during the SSP and match-play were 3.5 ± 1.5 and 2.4 ± 1.2 mmol · l?1 (P = 0.07), respectively. Peak ratings of perceived exertion during the SSP and match-play were similar (17 ± 2 and 17 ± 2, respectively; P = 0.64). It was concluded that the SSP closely replicated the demands of squash match-play in elite junior squash players. Furthermore, the SSP provides coaches and scientific support staff with a controlled squash-specific exercise protocol that has potential application in the objective investigation of a range of interventions such as training programmes, nutritional supplements and strategies to maintain core body temperature.  相似文献   

14.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

15.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

16.
Abstract

In this study, we examined fat oxidation rates during exercise in obese pubescent boys. Three groups of pubescent boys (16 pre-pubescent, Tanner's stage I; 16 pubescent, Tanner's stage III; and 14 post-pubescent, Tanner's stage V) performed a graded test on a leg cycle ergometer. The first step of the test was fixed at 30 W and power was gradually increased by 20 W every 3.5 min. Oxygen consumption ([Vdot]O2) and carbon dioxide production ([Vdot]CO2) were determined as the means of measurements during the last 30 s of each step, which allowed us to calculate fat oxidation rates versus exercise intensity. Between 20 and 50% of peak oxygen consumption ([Vdot]O2peak), fat oxidation rate in relative values (mg · min?1 · kg FFM?1) decreased continuously with pubertal development. In the same way, the maximum rate of fat oxidation occurred at a lower percentage of [Vdot]O2peak (pre-pubescent: 49.47 ± 1.62%; pubescent: 47.43 ± 1.26%; post-pubescent: 45.00 ± 0.97%). Our results confirm that puberty is responsible for a decrease in fat free mass capacities to use fat during exercise. The results suggest that post-pubescent obese boys need to practise physical activity at a lower intensity than pre-pubescent boys to enhance lipolysis and diminish adipose tissue and the consequences of obesity.  相似文献   

17.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

18.
Abstract

Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g · kg body mass?1 of glutamine in 5 ml · kg body mass?1 placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO2 = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake ([Vdot]O2max) immediately before completing a brief high-intensity time-trial (~4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (Δ[Vdot]O2max, P = 0.02) and exercise performance (control: 243 s, s x  = 7; glutamine: 242 s, s x  = 3; hyperoxia: 231 s, s x  = 3; hyperoxia + glutamine: 228 s, s x  = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased Δ[Vdot]O2max in normoxia, but not hyperoxia (interaction drink/FiO2, P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise.  相似文献   

19.
Abstract

The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males ([Vdot]O2max 57.8 ml · kg?1 · min?1, s = 3.7) completed a preloaded (15 min at 65%[Vdot]O2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption ([Vdot]O2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or [Vdot]O2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of ~1 h duration.  相似文献   

20.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号