首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Back injuries and the fast bowler in cricket   总被引:5,自引:0,他引:5  
Here, I review research that has investigated the aetiology of injuries experienced by adolescent and adult fast bowlers. Mechanical factors play an important role in the aetiology of degenerative processes and injuries to the lumbar spine. This is particularly so in fast bowling, where a player must absorb vertical and horizontal components of the ground reaction force that are approximately five and two times body weight at front-foot and rear-foot impact, respectively. Attenuated forces are transmitted to the spine through the lower limb, while additional forces at the lumbo-sacral junction are caused by trunk hyperextension, lateral flexion and twisting during the delivery stride. Fast bowlers are classified as side-on, front-on or mixed. The mixed action is categorized by the lower body configuration of the front-on action and the upper body configuration of the side-on technique. This upper body configuration is produced by counter-rotation away from the batsman in the transverse plane about the longitudinal axis of the body of a line through the two shoulders. Counter-rotations of 12-40 degrees during a delivery stride have predicted an increased incidence of lumbar spondylolysis, disc abnormality and muscle injury in fast bowlers. During the delivery stride, the mixed bowling action also shows: more lateral flexion and hyperextension of the lumbar spine at front-foot impact, and a greater range of motion of the trunk over the delivery stride when compared with the side-on and front-on techniques. The pars interarticularis of each vertebra is vulnerable to injury if repetitive flexion, rotation and hyperextension are present in the activity. Fast bowlers should reduce shoulder counter-rotation during the delivery stride to reduce the incidence of back injuries. When a player is required to bowl for extended periods irrespective of technique, overuse is also related to an increased incidence of back injuries and must be avoided.  相似文献   

2.
ABSTRACT

Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.  相似文献   

3.
Lower back injuries, specifically lumbar stress fractures, account for the most lost playing time in professional cricket. The aims of this study were to quantify the proportion of lower trunk motion used during the delivery stride of fast bowling and to examine the relationship between the current fast bowling action classification system and potentially injurious kinematics of the lower trunk. Three-dimensional kinematic data were collected from 50 male professional fast bowlers during a standing active range of motion trial and three fast bowling trials. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30 degrees. The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%), and ipsilateral rotation (79%) was used during the front foot contact phase of the fast bowling delivery stride. There was no significant difference in the proportions of available lower trunk extension, contralateral side-flexion, and ipsilateral rotation range of motion used during fast bowling by mixed and non-mixed action bowlers. Motion of the lower trunk, particularly side-flexion, during front foot contact, in addition to variables previously known to be related to back injury (e.g. shoulder counter-rotation), should be examined in future cross-sectional and prospective studies examining the fast bowling action and low back injury.  相似文献   

4.
Abstract

Lower back injuries, specifically lumbar stress fractures, account for the most lost playing time in professional cricket. The aims of this study were to quantify the proportion of lower trunk motion used during the delivery stride of fast bowling and to examine the relationship between the current fast bowling action classification system and potentially injurious kinematics of the lower trunk. Three-dimensional kinematic data were collected from 50 male professional fast bowlers during a standing active range of motion trial and three fast bowling trials. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30°. The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%), and ipsilateral rotation (79%) was used during the front foot contact phase of the fast bowling delivery stride. There was no significant difference in the proportions of available lower trunk extension, contralateral side-flexion, and ipsilateral rotation range of motion used during fast bowling by mixed and non-mixed action bowlers. Motion of the lower trunk, particularly side-flexion, during front foot contact, in addition to variables previously known to be related to back injury (e.g. shoulder counter-rotation), should be examined in future cross-sectional and prospective studies examining the fast bowling action and low back injury.  相似文献   

5.
The aims of this study were to determine the influence of an 8-over spell on cricket fast bowling technique and performance (speed and accuracy), and to establish the relationship of selected physical capacities with technique and performance during an 8-over spell. Fourteen first-grade fast bowlers with a mean age of 23 years participated in the study. Physical capacities assessed were abdominal strength, trunk stability, selected girth and skinfold measures. During the delivery stride, bowlers were filmed from an overhead and lateral perspective (50 Hz) to obtain two-dimensional data for transverse plane shoulder alignment and sagittal plane knee joint angle respectively. Ball speed was measured by a radar gun and accuracy by the impact point of each delivery on a zoned scoring target at the batter's stumps. Shoulder counter-rotation did not change significantly between overs 2 and 8 for all bowlers, but was significantly related to a more front-on shoulder orientation at back foot impact. When the front-on fast bowlers (n = 5) were isolated for analysis, shoulder counter-rotation increased significantly between overs 2 and 8. Ball speed remained constant while accuracy showed some non-significant variation during the spell. Shoulder counter-rotation was significantly related to accuracy scores during the second half of the 8-over spell. Chest girth and composition and body composition were significantly related to ball release speed at various times during the spell.  相似文献   

6.
The aims of this study were to determine the influence of an 8-over spell on cricket fast bowling technique and performance (speed and accuracy), and to establish the relationship of selected physical capacities with technique and performance during an 8-over spell. Fourteen first-grade fast bowlers with a mean age of 23 years participated in the study. Physical capacities assessed were abdominal strength, trunk stability, selected girth and skinfold measures. During the delivery stride, bowlers were filmed from an overhead and lateral perspective (50 Hz) to obtain two-dimensional data for transverse plane shoulder alignment and sagittal plane knee joint angle respectively. Ball speed was measured by a radar gun and accuracy by the impact point of each delivery on a zoned scoring target at the batter's stumps. Shoulder counter-rotation did not change significantly between overs 2 and 8 for all bowlers, but was significantly related to a more front-on shoulder orientation at back foot impact. When the front-on fast bowlers ( n = 5) were isolated for analysis, shoulder counter-rotation increased significantly between overs 2 and 8. Ball speed remained constant while accuracy showed some non-significant variation during the spell. Shoulder counter-rotation was significantly related to accuracy scores during the second half of the 8-over spell. Chest girth and composition and body composition were significantly related to ball release speed at various times during the spell.  相似文献   

7.
In this study we analysed technique, ball speed and trunk injury data collected at the Australian Institute of Sport (AIS) from 42 high performance male fast bowlers over a four year period. We found several notable technique inter-relationships, technique and ball speed relationships, and associations between technique and trunk injuries. A more front-on shoulder alignment at back foot contact was significantly related to increased shoulder counter-rotation (p < 0.001). Bowlers who released the ball at greater speeds had an extended front knee, or extended their front knee, during the front foot contact phase (p < 0.05). They also recorded higher braking and vertical impact forces during the front foot contact phase and developed those forces more rapidly (p < or =0.05). A maximum hip-shoulder separation angle occurring later in the delivery stride (p = 0.05) and a larger shoulder rotation to ball release (p = 0.05) were also characteristics of faster bowlers. Bowlers suffering lower back injuries exhibited typical characteristics of the 'mixed' technique. Specifically, the hip to shoulder separation angle at back foot contact was greater in bowlers who reported soft tissue injuries than in non trunk-injured bowlers (p = 0.03), and shoulder counter-rotation was significantly higher in bowlers who reported lumbar spine stress fractures than non trunk-injured bowlers (p = 0.01). The stress fracture group was also characterised by a larger hip angle at front foot contact and ball release, whereas a more flexed front knee at ball release characterised the non trunk-injured group.  相似文献   

8.
Fast bowling in cricket is an activity that is well recognised as having high injury prevalence and there has been debate regarding the most effective fast bowling technique. The aim of this study was to determine whether two-year coaching interventions conducted in a group of elite young fast bowlers resulted in fast bowling technique alteration. Selected kinematics of the bowling action of 14 elite young fast bowlers were measured using an 18 camera Vicon Motion Analysis system before and after two-year coaching interventions that addressed specific elements of fast bowling technique. Mann-Whitney tests were used to determine whether any changes in kinematic variables occurred pre- and post-intervention between those who had the coaching interventions and those who didn't. The coaching interventions, when applied, resulted in a more side-on shoulder alignment at back foot contact (BFC) (p = 0.002) and decreased shoulder counter-rotation (p = 0.001) however, there was no difference in the degree of change in back and front knee flexion angles or lower trunk side-flexion. This study has clearly shown that specific aspects of fast bowling technique are changeable over a two-year period in elite level fast bowlers and this may be attributed to coaching intervention.  相似文献   

9.
The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for "good" and "short" length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion--extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for "short" and "good" length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

10.
11.
Abstract

The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for “good” and “short” length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion – extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for “short” and “good” length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

12.
Abstract

This study aimed to assess changes in bowling technique and lumbar load over the course of a bowling spell in adolescent fast bowlers, and to investigate the relationship between lumbar loads during fast bowling and kinematic factors which have previously been associated with low back injury. Three-dimensional motion analysis was carried out on forty participants who performed an 8-over bowling spell. There were no significant changes in bowling technique or lumbar loads over the course of the spell. Bowling with a more extended front knee, faster ball release speed and increased shoulder counter-rotation were related to increased lumbo-pelvic loading – in particular peak transverse plane rotation moments and anterior-posterior shear forces. These lumbar loads may be a factor in low back injury aetiology and future studies should investigate the relationship between lumbar loading, injury incidence and other risk factors.  相似文献   

13.
The influence of a bowling harness, as a training aid, was assessed as a means of modifying bowling technique. Thirty-three 13-year-old bowlers received a standardized 15 min of bowling coaching twice a week for 8 weeks. They were randomly assigned to one of two groups. The 13 participants in the intervention group used the bowling harness throughout the coaching, while also receiving verbal and visual feedback. The 20 participants in the non-harness group received the same visual and verbal feedback. Three-dimensional videography (200 Hz) of each player's bowling action enabled the calculation of transverse plane shoulder alignment counter-rotation, separation angle, lateral flexion and hyperextension of the trunk before and after the intervention. The restriction applied by the harness produced a significant reduction (P= 0.006) in separation angle and forced the bowler to adopt a position at back-foot impact that reduced the 'twist' in the spine. However, it had no effect on restricting other aspects of trunk movement during the critical phases of the bowling action. No significant long-term modifications to technique were found after the coaching intervention when players were assessed without the harness.  相似文献   

14.
The influence of a bowling harness, as a training aid, was assessed as a means of modifying bowling technique. Thirty-three 13-year-old bowlers received a standardized 15 min of bowling coaching twice a week for 8 weeks. They were randomly assigned to one of two groups. The 13 participants in the intervention group used the bowling harness throughout the coaching, while also receiving verbal and visual feedback. The 20 participants in the non-harness group received the same visual and verbal feedback. Three-dimensional videography (200 Hz) of each player's bowling action enabled the calculation of transverse plane shoulder alignment counter-rotation, separation angle, lateral flexion and hyperextension of the trunk before and after the intervention. The restriction applied by the harness produced a significant reduction ( P = 0.006) in separation angle and forced the bowler to adopt a position at back-foot impact that reduced the 'twist' in the spine. However, it had no effect on restricting other aspects of trunk movement during the critical phases of the bowling action. No significant long-term modifications to technique were found after the coaching intervention when players were assessed without the harness.  相似文献   

15.
Introduction: Adolescent fast bowlers are prone to sustaining lumbar injuries. Numerous components have been identified as contributing factors; however, there is limited empirical evidence outlining how the muscles of the lumbopelvic region, which play a vital role in stabilising the spine, function during the bowling action and the influence of such activation on injuries in the fast bowler. Methods: Surface electromyography was utilised to measure the function of the lumbar erector spinae, lumbar multifidus, gluteus medius and gluteus maximus muscles bilaterally during the fast bowling action in a group of 35 cricket fast bowlers aged 12–16 years. Results: Two prominent periods of activation occurred in each of the muscles examined. The period of greatest mean activation in the erector spinae and multifidus occurred near back foot contact (BFC) and within the post-ball-release (BR) phase. The period of greatest mean activation for the gluteus medius and gluteus maximus occurred during phases of ipsilateral foot contact. Discussion: The greatest periods of muscle activation in the paraspinal and gluteal muscles occurred at times where vertical forces were high such as BFC, and in the phases near BR where substantial shear forces are present. Conclusion: The posterior muscles within the lumbopelvic region appear to play a prominent role during the bowling action, specifically when compressive and shear forces are high. Further research is required to substantiate these findings and establish the role of the lumbopelvic muscles in the aetiology of lumbar injury in the cricket fast bowler.  相似文献   

16.
Fast bowlers are at a high risk of overuse injuries. There are specific bowling frequency ranges known to have negative or protective effects on fast bowlers. Inertial measurement units (IMUs) can classify movements in sports, however, some commercial products can be too expensive for the amateur athlete. As a large number of the world's population has access to an IMU (e.g. smartphones), a system that works on a range of different IMUs may increase the accessibility of automated workload monitoring in sport. Seventeen elite fast bowlers in a training setting were used to train and/or validate five machine learning models by bowling and performing fielding drills. The accuracy of machine learning models trained using data from all three bowling phases (pre-delivery, delivery and post-delivery) were compared to those trained using only the delivery phase at a sampling rate of 250 Hz. Next, models were trained using data down-sampled to 125 Hz, 50 Hz, and 25 Hz to mimic results from lower specification sensors. Models trained using only the delivery phase showed similar accuracy (> 95%) to those trained using all three bowling phases. When delivery-phase data were down-sampled, the accuracy was maintained across all models and sampling frequencies (>96%).  相似文献   

17.
通过对2010年广州亚运会板球测试赛中国女队7名主力投手技术的高速影像解析,从球速、投球臂角速度、投球步落地位置和步长、落地时身体姿态、球出手瞬间关节角等方面分析比较中国女投手的各项投球技术。结果发现:不同类型投手之间技术特征差异性明显,快投手比旋转投手的落地到球出手时间短;好投手比差投手落地位置和空中姿态稳定性好。通过研究还发现部分投手存在球出手时膝关节弯曲、手臂弯曲等技术缺陷,以及前脚越过击球线等技术犯规错误,提醒在比赛中应引起注意。  相似文献   

18.
The aim of this study was to assess the effect of pitch length (20.12 m [full length], 18 m and 16 m) on the fast bowling performance and technique of junior cricketers. Performance measures included ball release speed and accuracy, while technique variables evaluated were those shown to be related to the aetiology of lower back injury. Thirty-seven fast bowlers from the under-11 (n=14), under-13 (n=11) and under-15 (n=12) age groups were filmed bowling five deliveries at each of the above pitch lengths. Two synchronized NAC video cameras operating at 200 Hz permitted three-dimensional reconstruction of the hip and shoulder alignments, while a standard digital video camera operating at 50 Hz (positioned perpendicular to the bowling action) was used to measure front knee angle and ball release speed. Accuracy scores were taken from a zoned target at the batsman's stumps. A two-way analysis of variance with repeated measures (with age and pitch length as the between- and within-participant variables, respectively) was used to compare each age group at the 0.05 significance level. Results showed that accuracy improved in all age groups at shorter pitch lengths, although ball velocity remained constant throughout all trials. Shoulder counter-rotation increased significantly for the under-13 bowlers when bowling on the full-length pitch in comparison with the two shorter lengths. Counter-rotation also increased on the full-length pitch in the under-11 age group, although this increase was not significant. The under-15 bowlers' techniques did not change as pitch length increased. As under-11 and under-13 bowlers adopted a "safer" bowling action with superior accuracy on the 18?m compared with the full length pitch, it was concluded that these age groups should bowl on an 18?m pitch to reduce the likelihood of lower back injuries and improve accuracy.  相似文献   

19.
Due to the high incidence of lumbar spine injury in fast bowlers, international cricket organisations advocate limits on workload for bowlers under 19 years of age in training/matches. The purpose of this study was to determine whether significant changes in either fast bowling technique or movement variability could be detected throughout a 10-over bowling spell that exceeded the recommended limit. Twenty-five junior male fast bowlers bowled at competition pace while three-dimensional kinematic and kinetic data were collected for the leading leg, trunk and bowling arm. Separate analyses for the mean and within-participant standard deviation of each variable were performed using repeated measures factorial analyses of variance and computation of effect sizes. No substantial changes were observed in mean values or variability of any kinematic, kinetic or performance variables, which instead revealed a high degree of consistency in kinematic and kinetic patterns. Therefore, the suggestion that exceeding the workload limit per spell causes technique- and loading-related changes associated with lumbar injury risk is not valid and cannot be used to justify the restriction of bowling workload. For injury prevention, the focus instead should be on the long-term effect of repeated spells and on the fast bowling technique itself.  相似文献   

20.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 +/- 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 +/- 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号