首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

2.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

3.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

4.
Using a nonlinear complete order model of a synchronous motor, a robust second order sliding mode observer based control scheme is proposed. For that, a generalized super-twisting 3rd order observer is proposed for nonlinear systems. Based on the proposed observer scheme, a robust rotor flux observer is designed, then, a stator current observer is proposed using a classical super-twisting algorithm for extracting information of the rotor speed by means of the equivalent control method. The control design for the output tracking of a desired reference signal for the rotor speed is carried out with a classical super-twisting sliding mode algorithm and adaptive backstepping techniques. Due to the number of inputs, the flux in the excitation winding, and the direct component of the stator currents are also regulated. Numeric simulations predict a good performance of the closed-loop synchronous motor with parameter variations.  相似文献   

5.
The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.  相似文献   

6.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

7.
In this paper, the problem of active fault tolerant control for a reusable launch vehicle (RLV) with actuator fault using both adaptive and sliding mode techniques is investigated. Firstly, the kinematic equations and dynamic equations of RLV are given, which represent the characteristics of RLV in reentry flight phase. For the dynamic model of RLV in faulty case, a fault detection scheme is proposed by designing a nonlinear fault detection observer. Then, an active fault tolerant tracking strategy for RLV attitude control systems is presented by making use of both adaptive control and sliding mode control techniques, which can guarantee the asymptotic output tracking of the closed-loop attitude control systems in spite of actuator fault. Finally, simulation results are given to demonstrate the effectiveness of the developed fault tolerant control scheme.  相似文献   

8.
In this paper a sliding mode position control for high-performance real-time applications of induction motors is developed. The design also incorporates a sliding mode rotor flux estimator in order to avoid the flux sensors. The proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the observer and the controller, under parameter uncertainties and load torque disturbances, is provided using the Lyapunov stability theory. Finally simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

9.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

10.
The continuous finite-time nonsingular terminal sliding mode (NTSM) attitude tracking control for rigid spacecraft is investigated. Firstly, a finite-time attitude controller combined with a new adaptive update law is designed. Different from existing controllers, the proposed controller is inherently continuous and the chattering is effectively reduced. Then, an adaptive model-free finite-time state observer (AMFFTSO) and an angular velocity calculation algorithm (AVCA) are developed to estimate the unknown angular velocity. The unique feature of the proposed method is that the finite-time estimation of angular velocity is achieved and no prior knowledge of quaternion derivative upper bound is needed. Next, based on the estimated angular velocity, a finite-time attitude controller with only attitude measurement is developed. Finally, some simulations are presented and the effectiveness of the proposed control scheme is illustrated.  相似文献   

11.
In this paper, a decentralized asymptotic fault tolerant control system is proposed for near space vehicle (NSV) attitude dynamics. First, NSV reentry mode is described, and the actuator failure model is developed whose behavior is described by high-order dynamics. Next, the multi-model based fault diagnosis and identification (FDI) algorithm is proposed for high order actuator dynamics, which can accurately diagnose and identify the fault in short time. Based on sliding mode, command filter, and backstepping technique, using information of FDI, a constrained fault tolerant control (FTC) is designed for reentry NSV. Finally, simulation results are given to demonstrate the effectiveness and potential of the proposed FTC scheme.  相似文献   

12.
This paper is concerned with integrated event-triggered fault estimation (FE) and sliding mode fault-tolerant control (FTC) for a class of discrete-time Lipschtiz nonlinear networked control systems (NCSs) subject to actuator fault and disturbance. First, an event-triggered fault/state observer is designed to estimate the system state and actuator fault simultaneously. And then, a discrete-time sliding surface is constructed in state-estimation space. By the use of a reformulated Lipschitz property and delay system analysis method, the sliding mode dynamics and state/fault error dynamics are converted into a unified linear parameter varying (LPV) networked system model by taking into account the event-triggered scheme, actuator fault, external disturbance and network-induced delay. Based on this model and with the aid of Lyapunov–Krasovskii functional method, a delay-dependent sufficient condition is derived to guarantee the stability of the resulting closed-loop system with prescribed H performance. Furthermore, an observed-based sliding mode FTC law is synthesized to make sure the reachability of the sliding surface. Finally, simulation results are conducted to verify the effectiveness of the proposed method.  相似文献   

13.
Benefiting from a newly designed switching function in terminal sliding manifold and novel uncertainty handling solutions, this article presents a low-cost neuroadaptive control scheme that can not only achieve the finite time tracking control of robot system with multiple uncertainties also circumvent the possible singularity. Specifically, for the kinematics parameter uncertainties involved, the proposed terminal sliding mode observer can ensure the actual position of end-effector be accurately estimated within a finite time. And then, a neural approximator is designed to handle the non-parameterizable lumped dynamics uncertainty, and a new low-cost neural adaptive mechanism is constructed to reduce the computational burden. Furthermore, it is proved that all closed-loop signals are bounded and the tracking error converges to an arbitrarily small adjustable neighborhood of the origin within a finite time. The comparison simulation example also confirms the effectiveness and superiority of the proposed control scheme.  相似文献   

14.
In this paper, an observer-based sliding mode control (SMC) problem is investigated for a class of uncertain delta operator systems with nonlinear exogenous disturbance. A novel robust stability condition is obtained for a sliding mode dynamics by using Lyapunov theory in delta domain. Based on a designed sliding mode observer, a sliding mode controller is synthesized by employing SMC theory combined with reaching law technique. The robust asymptotical stability problem is also discussed for the closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability of sliding surfaces is also investigated in state-estimate space and estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the developed method.  相似文献   

15.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

16.
A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.  相似文献   

17.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

18.
This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.  相似文献   

19.
In this work, finite time position and heading control based on backstepping based fast terminal sliding mode control is proposed for coaxial octorotor subjected to external wind disturbances. First, mathematical model of the coaxial octorotor is developed and then a new learning-based technique, an extended inverse multi-quadratic radial basis function network (EIMRBFN) is proposed to estimate the unmodeled dynamics of the octorotor. The external disturbance observer is also designed to encompass the realistic disturbance effect in the dynamical model and to allow the controller handle external disturbances, effectively. Backstepping controller based on fast terminal sliding model control is then proposed and also applied on the resultant dynamical model that provides finite time convergence of system's states. The stability of the proposed controller and complete system is analyzed using Lyapunov stability theory. Finite time convergence analysis of the desired trajectory is also provided. Simulations are carried out to validate the effectiveness of the proposed control scheme. Comparison with traditional PID and LQR controllers also verifies that the proposed controller achieves improved performance.  相似文献   

20.
This paper focuses on the distributed fuzzy learning sliding mode cooperative control issue for non-affine nonlinear multi-missile guidance systems. The dynamics of each follower is non-affine form with unknown lumped factor. To estimate the unknown lumped factor, a generalized fuzzy hyperbolic model (GFHM) based prescribed performance observer (PPO) is proposed. Different from the traditional disturbance observers, a residual set of error transient behavior is incorporated additionally so that the peak phenomenon can be avoided. Meanwhile, an auxiliary system is employed to convert the system of each follower to augmented affine form. Then, a distributed fuzzy learning sliding mode cooperative control approach is designed which consists of two parts. The adaptive sliding mode control (SMC) part is designed to force the states to move along the predefined integral sliding surface. For the equivalent sliding dynamics, the distributed optimal control part with GFHM is developed to minimize the cooperative performance function. Thus, the stability and the optimality of the closed-loop system are guaranteed synchronously. Finally, all signals of closed-loop system are rigorously proved bounded and the multi-missile cooperative guidance scenario is applied to verify the effectiveness of proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号