首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper addresses the control problem for a class of discrete-time Markov jump linear systems with partially unknown transition probabilities using model predictive controller subject to external disturbances and input constraints. Our focus is on the design of a model predictive controller to stabilize the system with a given mixed H2/H performance index. Sufficient conditions are derived in terms of a set of linear matrix inequalities. Examples are presented to demonstrate the effectiveness of the proposed controller design method.  相似文献   

2.
This paper is concerned with the problem of discrete-time event-triggered H control for networked cascade control systems (NCCSs) with time-varying network-induced delay. First of all, an event-triggered scheme is introduced to this system for reducing the unnecessary waste of limited network bandwidth resources. Considering the effect of time-varying delay, a new mathematical model for this system is constructed. In this paper, based on the model and Lyapunov functional method, the co-design method of event-triggered parameter, state feedback primary controller and secondary controller with H performance is derived via linear matrix inequality technique. To illustrate the effectiveness of the proposed method, a simulation example considering a main steam temperature cascade control system is given. The proposed method emphasizes the application in the corresponding industrial control systems, it can be found that this method is superior to the one in some existing references, and the provided example demonstrates the effectiveness of the co-design method in the networked cascade control systems with event-triggered scheme.  相似文献   

3.
This paper addresses the flow control design of a connection-oriented communication network from the robust control theory perspective. Network is modelled as a nth order discrete system whose first order model is obtained using the two-time scale property associated with the process. The proposed scheme is characterised by an equivalent control based discrete sliding mode design for the first order model which is applied to nth order systems through aggregation. Besides its design simplicity, the proposed method exhibits finite time convergence property for the states while applied to the full order system emulating the characteristics of terminal sliding mode in a certain way. Simulation results via Matlab and ns-2 validate the efficacy of the proposed algorithm as an effective flow controller for connection-oriented networks.  相似文献   

4.
This paper addresses a robust tube based model predictive control (RTBMPC) strategy for tracking problem of piecewise affine (PWA) linear systems. The core idea of the RTBMPC strategy is to robustly control an uncertain system through its nominal system and an additional feedback term which rejects a bounded additive disturbance. In tracking problem, RTBMPC strategy should be capable to steer the uncertain system to a given setpoint fulfilling the constraints. But if the setpoint changes, the controller may not success due to the loss of feasibility of the optimization problem. This paper employs several novel features to deal with tracking problem. First, the tracking problem is converted into the regulation problem by introducing an extra system called regulation nominal system that its constraints are translated from tracking into regulation. It leads to a reduction in complexity of the objective function. Then, the feasibility region is enlarged for given setpoint without increasing the prediction horizon by changing the terminal constraint set at different steps of RTBMPC problem solving. Simulation examples, including two different case studies, are presented to illustrate the effectiveness of the proposed RTBMPC.  相似文献   

5.
In this paper, we present a supervisory discrete-time predictive control strategy for load/frequency control problems in networked multi-area power systems subject to coordination constraints. Coordination between the control center and the spatially distributed areas is accomplished via data networks subject to communication latency modeled by time-varying time-delay. The aim here is finding supervising strategies able to reconfigure, whenever necessary in response to unexpected load changes and/or faults, the nominal set-points on frequency and generated power to the generators of each area so that viable evolutions would arise for the overall power system and a new sustainable equilibrium is reached. In order to demonstrate the effectiveness of the strategy, examples on a four-area power system are presented.  相似文献   

6.
A new feedback controller architecture is presented for linear systems with a single I/O delay in the generalized internal model control (GIMC) framework. According to the doubly coprime factorization of these systems, traditional GIMC strategy is extended to linear systems with a single I/O delay. The distinguished feature of the control system architecture is that high tracking performance and good external disturbance rejection could be done separately by a nominal Smith predictor part and a finite dimensional conditional controller. First, a nominal Smith predictor part could be designed to deal with command tracking performance. Second, according to the left coprime factorization of the nominal controller, a finite dimensional conditional controller could be considered for external disturbance rejection, when the controlled plant should be assumed to be a square one. Finally, a simple design example is illustrated the effectiveness of the presented method.Finally, a simple design example is illustrated the effectiveness of the presented method.  相似文献   

7.
This paper presents an adaptive robust control strategy based on a radial basis function neural network (RBFNN) and an online iterative correction method (OICM) for a planar n-link underactuated manipulator with a passive first joint to realize its position control objective. An uncertain model of the planar n-link underactuated manipulator is built, which contains the parameter perturbation and the external disturbance. The adaptive robust controllers based on the RBFNN are designed to realize the model reduction, which makes the system reduce to a planar virtual three-link underactuated manipulator (PVTUM) and simplifies the complexity of the system control. An online differential evolution (DE) algorithm is used to calculate the target angles of the PVTUM based on the nominal model parameters. The control of the PVTUM is divided into two stages, and the adaptive robust controllers are still employed to realize the control objective of each stage. Then, the OICM is used to correct the deviations of all link angles of the PVTUM caused by the parameter perturbation, which makes the end-point of the system gradually approach to its target position. Finally, simulation results of a planar four-link underactuated manipulator demonstrate the effectiveness of the proposed adaptive robust control strategy.  相似文献   

8.
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.  相似文献   

9.
In this paper, a subspace predictive control (SPC) method with a novel data-driven event-triggered law is proposed for linear time-invariant systems with unknown model parameters. Based on the conventional SPC method, the event-triggered law is introduced to substitute the typical receding horizon optimization, which reduces the data computation load of the traditional SPC method. The key parameters of the event-triggered law are derived by the Q-learning method via system data and the input-to-state stability of the system can be ensured with the designed event-triggered law. The simulation results illustrate the effect and merits of the proposed method with comparisons.  相似文献   

10.
pH值的神经网络多步预测控制算法   总被引:6,自引:0,他引:6  
pH值控制过程是一个具有较强非线性、纯滞后的过程,针对pH值控制系统提出了一种基于神经网络的多步预测控制算法(NMPC)。神经网络用于辨识对象的预测模型,控制算法利用了神经网络的梯度信息。控制效果表明该控制系统具有较好的动态性能和较强的鲁棒性。  相似文献   

11.
This paper proposes an adaptive scheme of designing sliding mode control (SMC) for affine class of multi-input multi-output (MIMO) nonlinear systems with uncertainty in the systems dynamics and control distribution gain. The proposed adaptive SMC does not require any a priori knowledge of the uncertainty bounds and therefore offers significant advantages over the non-adaptive schemes of SMC design. The closed loop stability conditions are derived based on Lyapunov theory. The effectiveness of the proposed approach is demonstrated via simulations considering an example of a two-link robot manipulator and has been found to be satisfactory.  相似文献   

12.
In this paper, a method is proposed to reject disturbances in the model predictive control (MPC) strategy. In addition, uncertainties in the system parameters (i.e., internal disturbances) are considered as well. To achieve these goals, adaptive neural networks are designed as the predictor model and as the nonlinear disturbance observer, respectively. The disturbances are rejected via the optimization problem of the MPC. Stability of the closed-loop system is studied based on the Input-to-State Stability method. The proposed method is applied to the pH neutralization process and CSTR system and its effectiveness in optimal rejection of the disturbances and satisfying the system constrains is compared with the feed-forward control method.  相似文献   

13.
This paper investigates the problem of horizontal-plane trajectory tracking for fixed-wing unmanned aerial vehicles(UAVs) subjected to external disturbances and uncertainties including coupling and unmodeled dynamics. Under the assumption there exist ideal inner-loop controllers, the 12-state model is reduced to a 6-state translational motion model, which is described by a group of simplified nonlinear equations with equivalent disturbances via introducing general aerodynamic models. Then a new cascaded control structure consisting of an outer-loop controller for position control and inner-loop controllers for attitude and thrust control is proposed. Based on feedback linearization technology and signal compensation theory, the proposed controller applied for position control incorporates a nominal linear time-invariant controller and a robust compensator, the latter of which is introduced to restrain the effects of uncertainties and disturbances. The robust performance of the closed-loop system is proved. Actual experimental results conducted on a small fixed-wing aircraft demonstrate that the proposed control approach is effective.  相似文献   

14.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

15.
In this paper, new results are established for the delay-independent and delay-dependent problems of dissipative analysis and state-feedback synthesis for a class of nonlinear systems with time-varying delays with polytopic uncertainties. This class consists of linear time-delay systems subject to nonlinear cone-bounded perturbations. Both delay-independent and delay-dependent dissipativity criteria are established as linear matrix inequality-based feasibility tests. The developed results in this paper for the nominal system encompass available results on H approach, passivity and positive realness for time-delay systems as special cases. All the sufficient stability conditions are cast. Robust dissipativity as well as dissipative state-feedback synthesis results are also derived. Numerical examples are provided to illustrate the theoretical developments.  相似文献   

16.
This paper considers the group output consensus problem for a class of disturbed port-controlled Hamiltonian multi-agent systems via a composite control method. The composite distributed control protocol is proposed by combining the damping injection and energy shaping method, the finite-time disturbance observer (FTDO) technique and distributed protocol, which makes the closed-loop Hamiltonian multi-agent systems asymptotically stable and the group outputs reach consensus. It is shown that many kinds of disturbances can be estimated accurately via the FTDO. The advantage is that this control scheme exhibits not only better robustness against disturbances, but also the nominal system recovery performance. Two illustrative examples reveal that the designed control protocol is effective.  相似文献   

17.
This paper is concerned with the stability problem of nonlinear multiple time-delay singularly perturbed (NDSP) systems. To overcome the effect of modeling error between the reduced-order model of the NDSP plant and Takagi–Sugeno (T–S) fuzzy models, a robustness design of model-based fuzzy control is proposed in this study. A stability criterion in terms of Lyapunov’s direct method is derived to guarantee the asymptotic stability of NDSP systems. According to this criterion, a model-based fuzzy controller is then synthesized via the technique of parallel distributed compensation (PDC) to stabilize the NDSP system. If the designed fuzzy controller cannot stabilize the NDSP system, a high-frequency signal, commonly referred to as dither, is simultaneously introduced to stabilize it. Based on the relaxed method, the NDSP system can be stabilized by regulating appropriately the parameters of dither. If the dither’s frequency is high enough, the output of the dithered reduced system and that of its corresponding mathematical model – the relaxed reduced system – can be made as close as desired. This makes it possible to obtain a rigorous prediction of the stability of the dithered reduced system based on the one of the relaxed reduced system.  相似文献   

18.
This paper presents an effective approach to stabilize nonlinear multiple time-delay (NMTD) interconnected systems via a composite of fuzzy controllers and dithers. First, a neural-network (NN) model is employed to approximate each subsystem. Then, the dynamics of the NN model is converted into a linear differential inclusion (LDI) state-space representation. Next, in terms of Lyapunov?s direct method, a delay-dependent stability criterion is derived to guarantee the exponential stability of the NMTD interconnected system. Subsequently, the stability conditions of this criterion are reformulated into a linear matrix inequality (LMI). Based on the LMI, a robustness design of fuzzy control is synthesized not only to stabilize the NMTD interconnected system but also to achieve the optimal H performance by minimizing the disturbance attenuation level. A set of high-frequency signals (commonly referred to as dithers) is simultaneously injected to stabilize the NMTD interconnected system when the designed fuzzy controllers cannot stabilize it. If the dithers’ frequencies are high enough, the outputs of the dithered interconnected system and those of its corresponding mathematical model, the relaxed interconnected system, can be made as close as desired. This makes it possible to get a rigorous prediction of the stability of the dithered interconnected system by establishing the stability of the relaxed interconnected system. Finally, a numerical example with simulations is given to illustrate the feasibility of our approach.  相似文献   

19.
提出了预测函数控制(PFC)与PID控制结合的新方法.并针对典型工业过程控制.分析了预测函数控制的基本原理和特点。基于Smith预估器.给出了工业过程控制中改进的预测函数控制算法,并用MATLAB进行仿真实验.仿真结果也表明其对被控系统有良好的鲁棒性、抑制干扰能力和跟踪性能。  相似文献   

20.
This paper deals with real-time discrete adaptive output trajectory tracking for induction motors in the presence of bounded disturbances. A recurrent high order neural network structure is used to design a nonlinear observer and based on this model, a discrete-time control law is derived, which combines discrete-time block control and sliding modes techniques. Applicability of the scheme is illustrated via experimental results in real-time for a three phase induction motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号