首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper investigates a quaternion-based finite-time cooperative attitude synchronization and tracking of multiple rigid spacecraft with a virtual leader subject to bounded external disturbances. Firstly, the communication network between followers is assumed to be an undirected graph and every follower can get a direct access to the virtual leader, by using two neighborhood attitude error signals, a novel chattering-free recursive full-order sliding mode control algorithm is proposed such that all follower spacecraft synchronize to the virtual leader in finite time. In the proposed algorithm, the sliding mode surface is constructed by two layers of sliding mode surfaces, which are called as the outer and the inner sliding mode surfaces. To achieve finite-time performance of sliding mode dynamics, the outer sliding mode surface is designed as a terminal sliding mode manifold, and the inner one is designed as a fast nonsingular terminal sliding mode manifold, respectively. Then, to reduce the heavy communication burden, a distributed recursive full-order sliding mode control law is designed by introducing a distributed finite-time sliding mode estimator such that only a subset of the group members has access to the virtual leader. Finally, a numerical example is illustrated to demonstrate the validity of the proposed results.  相似文献   

2.
In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched uncertainties in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus is achieved asymptotically and all subsystem states are bounded. By using an integral sliding mode control, the subsystems lie on the sliding surface from the initial time, which avoids any sensitivity to uncertainties during the reaching phase. By use of an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces the conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method.  相似文献   

3.
In this paper, both leaderless and leader-follower consensus problems for a class of disturbed second-order multi-agent systems are studied. Based on integral sliding-mode control, sliding-mode consensus protocols are proposed for leaderless and leader-follower multi-agent systems with disturbances, respectively. Firstly, for leaderless second-order multi-agent systems, a sliding-mode consensus protocol is proposed to make the agents achieve asymptotic consensus. Secondly, for leader-follower second-order multi-agent systems, a finite-time sliding-mode consensus protocol is designed to make the agents achieve consensus in finite time. Both kinds of consensus protocols inherit the anti-disturbance performance and robustness of sliding-mode control and require less communication information. Finally, two numerical simulations are given for leaderless and leader-follower second-order multi-agent systems to validate the efficiency of the proposed consensus protocols.  相似文献   

4.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

5.
This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.  相似文献   

6.
The finite-time stochastic boundedness (FTSB) via the sliding mode control (SMC) approach is analyzed for Markovian jumping systems (MJSs) with time-delays. First, an integral switching surface is constructed. And to make sure the reachability of the sliding mode surface in a finite-time, an SMC law is designed. In addition, the delay-dependent criteria for FTSB are obtained over the reaching phase and the sliding motion phase. Furthermore, in line with linear matrix inequalities (LMIs), sufficient conditions are provided to guarantee the FTSB of systems over the whole finite-time interval. Lastly, an example is given to indicate the validity of the proposed approach.  相似文献   

7.
This article proposes a sliding mode control strategy for hyperbolic PDE systems under the requirement of finite-time boundedness. First, the singular perturbation theory is introduced to model multi-time scales phenomena, and a quantized measurement method is employed to save the communication resources in network. In addition, by considering the effect of the singular perturbation phenomenon in PDE systems, a sliding surface dependent on spatial position and singular perturbation parameter is constructed, then a sliding mode control law is developed to drive state trajectories to the designed sliding surface in finite time. Moreover, a partitioning strategy is introduced to ensure that the system is finite-time bounded in the reaching phase and the sliding motion phase, respectively. Finally, some sufficient conditions are given to ensure that the system is finite-time bounded in both reaching phase and sliding motion phase, and a simulation example of the chemical tubular reactor demonstrates the effectiveness of the proposed method.  相似文献   

8.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

9.
In this paper, we consider the robust finite-time consensus problem for second-order multi-agent systems (MASs) with limited sensing range and weak communication ability. As a stepping stone, a novel distributed finite-time sliding mode manifold is developed for MASs. Then, by combining artificial potential function technique with the presented sliding mode manifold, a robust distributed control scheme is proposed to enable the finite-time consensus of MASs while preserving the prescribed communication connectivity. Furthermore, the sampling frequency and implementation burden of the proposed controller can be reduced with resort to the event-triggered methodology. Finally, numerical examples are given to show the effectiveness of the proposed method.  相似文献   

10.
This paper considers the group output consensus problem for a class of disturbed port-controlled Hamiltonian multi-agent systems via a composite control method. The composite distributed control protocol is proposed by combining the damping injection and energy shaping method, the finite-time disturbance observer (FTDO) technique and distributed protocol, which makes the closed-loop Hamiltonian multi-agent systems asymptotically stable and the group outputs reach consensus. It is shown that many kinds of disturbances can be estimated accurately via the FTDO. The advantage is that this control scheme exhibits not only better robustness against disturbances, but also the nominal system recovery performance. Two illustrative examples reveal that the designed control protocol is effective.  相似文献   

11.
This paper explores the finite-time bounded issue for discrete-time singular time-varying delay system via sliding mode control method. A suitable discrete-time sliding mode control law is constructed to drive the state trajectories onto the specified sliding surface in a given finite time interval. Meanwhile, sufficient conditions for finite-time bounded to the closed-loop delayed system are provided in both reaching phase and sliding motion phase. In addition, the finite-time sliding mode controller gain matrix can be solved by using the linear matrix inequalities approach. Finally, three numerical examples are illustrated to demonstrate the superiority and practicability of presented results.  相似文献   

12.
This paper investigates the fractional-order (FO) adaptive neuro-fuzzy sliding mode control issue for a class of fuzzy singularly perturbed systems subject to the matched uncertainties and external disturbances. Firstly, a novel FO fuzzy sliding mode surface is presented. Secondly, by introducing an appropriate ε-dependent Lyapunov function, some H performance analysis criteria are given, which also ensure the robust stability of the sliding mode dynamics. Furthermore, a hybrid neuro-fuzzy network system (HNFNS) is introduced to estimate the matched uncertainty. Moreover, an FO adaptive fuzzy sliding mode controller is designed to drive the state trajectories of fuzzy singularly perturbed systems to the predefined FO sliding mode surface within a finite-time. Finally, two verification examples are presented to illustrate the validity of the proposed FO control scheme.  相似文献   

13.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

14.
To stabilize both amplitude and frequency of the second-order harmonic oscillator double-fold sliding mode control is employed. The first, integral sliding mode control, is used to compensate for the disturbance/uncertainty, which is unmatched by the second control. The second sliding mode control is designed to achieve the stabilization of the harmonic oscillator system while the system is in the integral sliding mode. The first (integral) and second sliding mode controls are implemented in both formats: traditional sliding mode control that requires high-frequency oscillating control action and second-order sliding mode (super-twisting) control that is continuous and provides for the higher accuracy of stabilization. It is shown that the output of the double-fold sliding mode controlled second-order harmonic oscillator is robust to bounded disturbances and model parameter uncertainties. Computer simulations are performed to manifest the theoretical analysis.  相似文献   

15.
This paper investigates the distributed chattering-free containment control problem for multiple Euler–Lagrange systems with general disturbances under a directed topology. It is considered that only a subset of the followers could receive the information of the multiple dynamic leaders. First, by combining a linear sliding surface with a nonsingular terminal sliding manifold, a distributed chattering-free asymptotic containment control method is proposed under the assumption that the upper bounds of the general disturbances are known. Further, based on the high-order sliding mode control technique, an improved distributed chattering-free finite-time containment control algorithm is developed. Besides, adaptive laws are designed to estimate the unknown upper bounds of the general disturbances. It is demonstrated that all the followers could converge into the convex hull spanned by the leaders under both proposed control algorithms by graph theory and Lyapunov theory. Numerical simulations and comparisons are provided to show the effectiveness of both algorithms.  相似文献   

16.
Lack of actuators creates many challenges in controlling underactuated systems. Additional difficulty arises when underactuated systems are subject to actuator faults, parametric uncertainties, and disturbances. We develop an adaptive robust controller for such systems by combining various advanced techniques with many benefits. The core of the controller, which is based on nonsingular integral fast-terminal sliding mode, ensures high robustness and quick finite-time convergence, reduces chattering, and prevents singularity. Fault-tolerant control provides good fault compensation. Fractional derivatives make the control structure flexible because fractional orders are adjustable gains. Self-tuning control creates an adaption mechanism that endows the system an intelligent behavior. Two layers of the sliding mode that contain fractional derivative, terminal power, and definite integral ensure terminal Mittag–Leffer stability. We test the proposed approach on an underactuated floating crane through a simulation and an experiment. A comparison with other methods shows the superiority of our approach.  相似文献   

17.
This paper deals with the leader-follower finite-time consensus problem for multiagent systems with nonlinear dynamics via intermittent protocol. The topological structure of the followers is undirected or balanced digraph. Different from most existing works concerning nonlinear dynamics (satisfies Lipschitz continuity), the nonlinear dynamics of each agent satisfies Hölder continuity in this paper. In light of the finite-time control technique, the intermittent control protocol is designed to reach accurate leader-follower finite-time consensus. It is justified that the leader-follower finite-time consensus can be realized if the length of communication is greater than a critical value by using limit theory. Finally, two numerical examples are exhibited to validate the effectiveness of the proposed scheme.  相似文献   

18.
The issue of finite-time sliding mode control (SMC) is studied for a class of Markov jump systems, in which parameter uncertainties, external disturbances and time-varying delay are considered. Firstly, a suitable observer-based SMC law is devised so that state trajectory of the system can reach the designed sliding mode surface in finite-time, the gain of the controller is asynchronous to the mode of original system. Meanwhile, the sufficient conditions of finite-time boundedness in the sliding phase and reaching phase are derived by the time partition strategy. Moreover, the gains of the observer and the observer-based controller will be acquired by using the linear matrix inequalities tool. In fine, emulation products are used to confirm the merits of the SMC strategy.  相似文献   

19.
Finite-time inter-layer projective synchronization (FIPS) of Caputo fractional-order two-layer networks (FTN) based on sliding mode control (SMC) technique is investigated in this article. Firstly, in order to realize the FIPS of FTN, a fractional-order integral sliding mode surface (SMS) is established. Then, through the theory of SMC, we design a sliding mode controller (SMCr) to ensure the appearance of sliding mode motion. According to the fractional Lyapunov direct method, the trajectories of the system are driven to the proposed SMS, and some novel sufficient conditions for FIPS of FTN are derived. Furthermore, as two special cases of FIPS, finite-time inter-layer synchronization and finite-time inter-layer anti-synchronization for the FTN are studied. Finally, this paper takes the fractional-order chaotic Lü’s system and the fractional-order chaotic Chen’s system as the isolated node of the first layer system and the second layer system, respectively. And the numerical simulations are given to demonstrate the feasibility and validity of the proposed theoretical results.  相似文献   

20.
This paper presents the optimal regulator for a linear system with state delay and a quadratic criterion. The optimal regulator equations are obtained using the maximum principle. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear regulator available for linear systems without delays. Simulation graphs demonstrating better performance of the obtained optimal regulator are included. The paper then presents a robustification algorithm for the obtained optimal regulator based on integral sliding mode compensation of disturbances. The general principles of the integral sliding mode compensator design are modified to yield the basic control algorithm oriented to time-delay systems, which is then applied to robustify the optimal regulator. As a result, the sliding mode compensating control leading to suppression of the disturbances from the initial time moment is designed. The obtained robust control algorithm is verified by simulations in the illustrative example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号