首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the distributed state estimation problem for a linear time-invariant system characterized by fading measurements and random link failures. We assume that the fading effect of the measurements occurs slowly. Additionally, communication failures between sensors can affect the state estimation performance. To this end, we propose a Kalman filtering algorithm composed of a structural data fusion stage and a signal date fusion stage. The number of communications can be decreased by executing signal data fusion when a global estimate is required. Then, we investigate the stability conditions for the proposed distributed approach. Furthermore, we analyze the mismatch between the estimation generated by the proposed distributed algorithm and that obtained by the centralized Kalman filter. Lastly, numerical results verify the feasibility of the proposed distributed method.  相似文献   

2.
In this paper, the centralized security-guaranteed filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor fusion under deception attacks. The underlying system includes a number of sensor nodes with a centralized filter, where each sensor is allowed to be sampled at different rate. A new measurement output model is proposed to characterize both the multiple rates and the deception attacks. By exploiting the lifting technique, the multi-rate sensor system is cast into a single-rate discrete-time system. With a new concept of security level, the aim of this paper is to design a filter such that the filtering error dynamics achieves the prescribed level of the security under deception attacks. By using the stochastic analysis techniques, sufficient conditions are first derived such that the filtering error system is guaranteed to have the desired security level, and then the filter gain is parameterized by using the semi-definite programme method with certain nonlinear constraints. Finally, a numerical simulation example is provided to demonstrate the feasibility of the proposed filtering scheme.  相似文献   

3.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

4.
Sampled-data control for time-delay systems   总被引:1,自引:0,他引:1  
The sampled-data systems are hybrid ones involving continuous time and discrete time signals, which makes the traditional analysis and synthesis methodologies of time-delay systems unable to be directly used in the cases of hybrid systems with time-delay. The primary disadvantages of current design techniques of sampled-data control are their inabilities to deal effectively with time-delay and the model uncertainty. In this paper, we generalized the analysis methodology of time-delay systems to that of the hybrid systems with time-delay and uncertainty, which developed a design procedure of sampled-data control for time-delay systems. Asymptotic stability of the time-delay hybrid systems was developed. The time-delay dependent robust sampled-data control for the time-varying delay of an uncertain linear system was then discussed. The results were described as linear matrix inequalities, which can be solved using newly released LMITool.  相似文献   

5.
In this paper, a subspace predictive control (SPC) method with a novel data-driven event-triggered law is proposed for linear time-invariant systems with unknown model parameters. Based on the conventional SPC method, the event-triggered law is introduced to substitute the typical receding horizon optimization, which reduces the data computation load of the traditional SPC method. The key parameters of the event-triggered law are derived by the Q-learning method via system data and the input-to-state stability of the system can be ensured with the designed event-triggered law. The simulation results illustrate the effect and merits of the proposed method with comparisons.  相似文献   

6.
This paper presents a moving horizon estimation approach for the multirate sampled-data system with unknown time-delay sequence. To estimate the unknown variables of interest, two main challenging issues need to be addressed: (a) synthesizing the multirate input and output data for state estimation, (b) simultaneously estimating the continuous state and discrete time-delay sequence. In this work a moving horizon estimation based approach is developed to tackle these issues. The proposed approach can simultaneously estimate both the continuous states and discrete time-delay sequence for dynamic systems. The effects of different noise level on the estimation of continuous states and discrete time-delay sequence are analyzed. The effectiveness of this method is illustrated through a simulation study.  相似文献   

7.
We concentrate on the linear spatially distributed time-invariant two-dimensional systems with multiple inputs and multiple outputs and with control action based on an array of sensors and actuators connected to the system. The system is described by the bivariate matrix polynomial fraction. Stabilisation of such systems is based on the relationship between stability of a bivariate polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are not linear in the controller parameters, however, in simple cases, a linearising factorisation exists. It allows to describe the control design in the form of a linear matrix inequality. In more complicated cases, linear sufficient conditions are given. This concept is applied to a system with multiple outputs—a heat conduction in a long thin metal rod equipped with an array of temperature sensors and heaters, where heaters are placed in larger distances than sensors.  相似文献   

8.
In this paper, the distributed fusion filtering issue is investigated for multi-sensor systems with the constraints from both time-correlated fading channels and energy harvesters. A specific scenario is considered where the sensors can harvest energy from the natural environment and may consume a certain amount of energy when transmitting measurements to the filters. In order to properly deal with the energy supply relationship between a battery and multiple sensors, a dynamic energy-allocated rule is proposed in this paper, i.e., the storage battery provides energy to sensors in order of different sensors’ priorities. Additionally, the channel fading phenomenon is also taken into consideration and the fading coefficient is described by a dynamic process. In this paper, we are committed to designing a local filter such that, under the effects of the time-correlated fading channels and energy harvesters, an upper bound on the local filtering error covariance is firstly derived by using the mathematical induction and then the upper bound is minimized by designing the local filter gain. Next, the covariance intersection approach is employed to obtain the fusion estimates. Finally, a simulation is provided to verify that the presented filtering strategy is feasible and effective.  相似文献   

9.
This paper addresses the design of a sampled-data model predictive control (MPC) strategy for linear parameter-varying (LPV) systems. A continuous-time prediction model, which takes into account that the samples are not necessarily periodic and that plant parameters vary continuously with time, is considered. Moreover, it is explicitly assumed that the value of the parameters used to compute the optimal control sequence is measured only at the sampling instants. The MPC approach proposed by Kothare et al. [1], where the basic idea consists in solving an infinite horizon guaranteed cost control problem at each sampling time using linear matrix inequalities (LMI) based formulations, is adopted. In this context, conditions for computing a sampled-data stabilizing LPV control law that provides a guaranteed cost for a quadratic performance criterion under input saturation are derived. These conditions are obtained from a parameter-dependent looped-functional and a parameter-dependent generalized sector condition. A strategy that consists in solving convex optimization problems in a receding horizon policy is therefore proposed. It is shown that the proposed strategy guarantees the feasibility of the optimization problem at each step and leads to the asymptotic stability of the origin. The conservatism reduction provided by the proposed results, with respect to similar ones in the literature, is illustrated through numerical examples.  相似文献   

10.
This paper studies the distributed Kalman consensus filtering problem based on the event-triggered (ET) protocol for linear discrete time-varying systems with multiple sensors. The ET strategy of the send-on-delta rule is employed to adjust the communication rate during data transmission. Two series of Bernoulli random variables are introduced to represent the ET schedules between a sensor and an estimator, and between an estimator and its neighbor estimators. An optimal distributed filter with a given recursive structure in the linear unbiased minimum variance criterion is derived, where solution of cross-covariance matrix (CCM) between any two estimators increases the complexity of the algorithm. In order to avert CCM, a suboptimal ET Kalman consensus filter is also presented, where the filter gain and the consensus gain are solved by minimizing an upper bound of filtering error covariance. Boundedness of the proposed suboptimal filter is analyzed based on a Lyapunov function. A numerical simulation verifies the effectiveness of the proposed algorithms.  相似文献   

11.
This paper is concerned with a security problem about malicious integrity attacks in state estimation system, in which multiple smart sensors locally measure information and transmit it to a remote fusion estimator though wireless channels. A joint constraint is considered for the attacker behaviour in each channel to keep stealthiness under a residual-based detector on the remote side. In order to degrade the estimator performance, the attacker will maximize the trace of the remote state estimation error covariance which is derived based on Kalman filter theory. It is proved that the optimal linear attack strategy design problem is convex and finally turned into a semi-definite programming problem. In addition, the tendency of attack behaviour on recursive and fixed Kalman filter system is analyzed. Several examples are given to illustrate the theoretical results.  相似文献   

12.
《Journal of The Franklin Institute》2019,356(18):11561-11580
This paper addresses the robust H filter design problem for a class of uncertain fuzzy neutral stochastic system with time-delay through Takagi–Sugeno (T–S) fuzzy model. By constructing an augmented Lyapunov–Krasovskii functional, some novel delay-dependent stability criteria for uncertain fuzzy neutral stochastic system with time varying delay are obtained in terms of linear matrix inequalities. By using the integral inequality in the neutral stochastic setting combined with delay decomposition approach, the H fuzzy filter is designed to guarantee the corresponding filtering error systems robustly asymptotically stable with a specified H performance index. At last, two numerical examples are presented to show the less conservatism than the previous results.  相似文献   

13.
This paper is concerned with the problem of delay-dependent stability for a class of singular time-delay systems. By representing the singular system as a neutral form, using an augmented Lyapunov–Krasovskii functional and the Wirtinger-based integral inequality method, we obtain a new stability criterion in terms of a linear matrix inequality (LMI). The criterion is applicable for the stability test of both singular time-delay systems and neutral systems with constant time delays. Illustrative examples show the effectiveness and merits of the method.  相似文献   

14.
This paper studies the global asymptotic stability of a class of interval fractional-order (FO) nonlinear systems with time-delay. First, a new lemma for the Caputo fractional derivative is presented. It extends the FO Lyapunov direct method allowing the stability analysis and synthesis of FO nonlinear systems with time-delay. Second, by employing FO Razumikhin theorem, a new delay-independent stability criterion, in the form of linear matrix inequality is established for ensuring that a system is globally asymptotically stable. It is shown that the new criterion is simple, easy to use and valid for the FO or integer-order interval neural networks with time-delay. Finally, the feasibility and effectiveness of the proposed scheme are tested with a numerical example.  相似文献   

15.
In this paper, we deal with the finite-time stability of positive switched linear time-delay systems. By constructing a class of linear time-varying copositive Lyapunov functionals, we present new explicit criteria in terms of solvable linear inequalities for the finite-time stability of positive switched linear time-delay systems under arbitrary switching and average dwell-time switching. As an important application, we apply the method to finite-time stability of linear time-varying systems with time delay.  相似文献   

16.
In this paper, we will investigate the necessary conditions, described by the Lyapunov matrix, for the robust exponential stability for a class of linear uncertain systems with a single constant delay and time-invariant parametric uncertainties, which are some generalizations of the existing results on uncertain linear time-delay systems. As a medium step, several pivotal properties of parameter-dependent Lyapunov matrix are proposed, which set up the relationships between fundamental matrix and Lyapunov matrix for the considered system. In addition, to calculate the parameter-dependent Lyapunov matrix, we introduce the differential equation method and the Lagrange interpolation method, respectively. Furthermore, it is noted that the proposed necessary conditions can be used to estimate the range of time delay, when the linear uncertain time-delay system is robust exponential stability. Finally, the validity of the obtained theoretical results is illustrated via numerical examples.  相似文献   

17.
Health monitoring of nonlinear systems is broadly concerned with the system health tracking and its prediction to future time horizons. Estimation and prediction schemes constitute as principle components of any health monitoring technique. Particle filter (PF) represents a powerful tool for performing state and parameter estimation as well as prediction of nonlinear dynamical systems. Estimation of the system parameters along with the states can yield an up-to-date and reliable model that can be used for long-term prediction problems through utilization of particle filters. This feature enables one to deal with uncertainty issues in the resulting prediction step as the time horizon is extended. Towards this end, this paper presents an improved method to achieve uncertainty management for long-term prediction of nonlinear systems by using particle filters. In our proposed approach, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizon. Particles are then propagated to future time instants according to a resampling algorithm instead of considering constant weights for the particles propagation in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models for development of an observation forecasting scheme. This task is addressed through an outer adjustment loop for adaptively changing the sliding observation injection window based on the Mahalanobis distance criterion. Our proposed approach is then applied to predicting the health condition as well as the remaining useful life (RUL) of a gas turbine engine that is affected by degradations in the system health parameters. Extensive simulation and case studies are conducted to demonstrate and illustrate the capabilities and performance characteristics of our proposed and developed schemes.  相似文献   

18.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

19.
In this paper, we present a secure distributed estimation strategy in networked systems. In particular, we consider distributed Kalman filtering as the estimation method and Paillier encryption, which is a partially homomorphic encryption scheme. The proposed strategy protects the confidentiality of the transmitted data within a network. Moreover, it also secures the state estimation computation process. To this end, all the algebraic calculations needed for state estimation in a distributed Kalman filter are performed over the encrypted data. As Paillier encryption only deals with integer data, in general, this, in turn, provides significant quantization error in the computation process associated with the Kalman filter. However, the proposed estimation approach handles quantized data in an efficient way. We provide an optimality and convergence analysis of our proposed method. It is shown that state estimation and a covariance matrix associated with the proposed method remain with a certain small radius of those of a conventional centralized Kalman filter. Simulation results are given to further demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
The primary goal of this paper is to examine the finite-time stability and finite-time contractive stability of the linear systems in fractional domain with time-varying delays. We develop some sufficient criteria for finite-time contractive stability and finite-time stability utilizing fractional-order Lyapunov-Razumikhin technique. To validate the proposed conditions, two different types of dynamical systems are taken into account, one is general time-delay fractional-order system and another one is fractional-order linear time-varying time-delay system, furthermore the efficacy of the stability conditions is demonstrated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号