首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundProtein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis.ResultsThe B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor.ConclusionsPGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.How to cite: Niu D, Li C, Wang P, et al. Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.006  相似文献   

2.
BackgroundLipases are used in detergent industries to minimise the use of phosphate-based chemicals in detergent formulations. The use of lipase in household laundry reduces environmental pollution and enhances the ability of detergent to remove tough oil or grease stains.ResultsA lipase-producing indigenous Bacillus subtilis strain [accession no. KT985358] was isolated from the foothills of Trikuta mountain in Jammu and Kashmir, India. The lipase (BSK-L) produced by this strain expressed alkali and thermotolerance. Lipase has an optimal activity at pH 8.0 and temperature 37°C, whereas it is stable at pH 6.0–9.0 and showed active lipolytic activity at temperatures 30 to 60°C. Furthermore, lipase activity was found to be stimulated in the presence of the metal ions Mn2 +, K+, Zn2 +, Fe2 + and Ca2 +. This lipase was resistant to surfactants, oxidising agents and commercial detergents, suggesting it as a potential candidate for detergent formulation. BSK-L displayed noticeable capability to remove oil stains when used in different washing solutions containing buffer, lipase and commercial detergent. The maximum olive oil removal percentage obtained was 68% when the optimum detergent concentration (Fena) was 0.3%. The oil removal percentage from olive oil-soiled cotton fabric increased with 40 U/mL of lipase.ConclusionsThis BSK-L enzyme has the potential for removing oil stains by developing a pre-soaked solution for detergent formulation and was compatible with surfactants, oxidising agents and commercial detergents.  相似文献   

3.
BackgroundEndoglucanase plays a major role in initiating cellulose hydrolysis. Various wild-type strains were searched to produce this enzyme, but mostly low extracellular enzyme activities were obtained. To improve extracellular enzyme production for potential industrial applications, the endoglucanase gene of Bacillus subtilis M015, isolated from Thai higher termite, was expressed in a periplasmic-leaky Escherichia coli. Then, the crude recombinant endoglucanase (EglS) along with a commercial cellulase (Cel) was used for hydrolyzing celluloses and microbial hydrolysis using whole bacterial cells.ResultsE. coli Glu5 expressing endoglucanase at high levels was successfully constructed. It produced EglS (55 kDa) with extracellular activity of 18.56 U/mg total protein at optimal hydrolytic conditions (pH 4.8 and 50°C). EglS was highly stable (over 80% activity retained) at 40–50°C after 100 h. The addition of EglS significantly improved the initial sugar production rates of Cel on the hydrolysis of carboxymethyl cellulose (CMC), microcrystalline cellulose, and corncob about 5.2-, 1.7-, and 4.0-folds, respectively, compared to those with Cel alone. E. coli Glu5 could secrete EglS with high activity in the presence of glucose (1% w/v) and Tween 80 (5% w/v) with low glucose consumption. Microbial hydrolysis of CMC using E. coli Glu5 yielded 26 mg reducing sugar/g CMC at pH 7.0 and 37°C after 48 h.ConclusionsThe recombinant endoglucanase activity improved by 17 times compared with that of the native strain and could greatly enhance the enzymatic hydrolysis of all studied celluloses when combined with a commercial cellulase.  相似文献   

4.
BackgroundThe alga Laminaria japonica is the most economically important brown seaweed cultured in China, which is used as food and aquatic animal feedstuff. However, the use of L. japonica as a feedstuff in Apostichopus japonicas farming is not ideal because A. japonicas does not produce enough enzyme activity for degrading the large amount of algin present in L. japonica. In this study, semi solid fermentation of the L. japonica feedstuff employing a Bacillus strain as the microbe was used to as a mean to degrade the algin content in L. japonica feedstuff.ResultsThe Bacillus strain, Bacillus amyloliquefaciens WB1, was isolated by virtue of its ability to utilize sodium alginate as the sole carbon source. Eight factors affecting growth and algin-degrading capacity of WB1 were investigated. The results of Plackett–Burman design indicated that fermentation time, beef extract, and solvent to solid ratio were the significant parameters. Furthermore, the mutual interaction between the solvent to solid ratio and beef extract concentration was more significant than the other pairs of parameters on algin degradation. Optimal values obtained from Central-Composite Design were 113.94 h for fermentation time, 0.3% (w/v) beef extract and 44.87 (v/w) ratio of solvent to feedstuff. Under optimal conditions, 56.88% of the algin was degraded when a 50-fold scale-up fermentation was carried out, using a 5-L fermenter.ConclusionsThis study provides an alternative and economical way to reduce the algin content in L. japonica through degradation by WB1, making it a promising potential source of feed for cultured L. japonica.  相似文献   

5.
BackgroundCurrently, microbial fermentation method has become the research hotspot for acetoin production. In our previous work, an acetoin-producing strain, Bacillus subtilis SF4-3, was isolated from Japanese traditional fermented food natto. However, its conversion of glucose to acetoin was relatively low. In order to achieve a high-efficient accumulation of acetoin in B. subtilis SF4-3, main medium components and fermentation conditions were evaluated in this work.ResultsThe by-products analysis showed that there existed reversible transformation between acetoin and 2,3-butanediol that was strictly responsible for acetoin production in B. subtilis SF4-3. The carbon sources, nitrogen sources and agitation speed were determined to play crucial role in the acetoin production. The optimal media (glucose·H2O 150 g/L, yeast extract 10 g/L, corn steep dry 5 g/L, urea 2 g/L, K2HPO4 0.5 g/L, MgSO4 0.5 g/L) were obtained. Furthermore, the low agitation speed of 300 r/min was found to be beneficial to the reversible transformation of 2,3-butanediol for acetoin production in B. subtilis SF4-3. Eventually, 48.9 g/L of acetoin and 5.5 g/L of 2,3-butanediol were obtained in a 5-L fermenter, and the specific production of acetoin was 39.12% (g/g), which accounted for 79.90% of the theoretical conversion.ConclusionsThe results indicated acetoin production of B. subtilis SF4-3 was closely related to the medium components and dissolved oxygen concentrations. It also provided a method for acetoin production via the reversible transformation of acetoin and 2,3-butanediol.  相似文献   

6.
BackgroundJuvenile Yoshitomi tilapia is often infected by pathogens and results in low-level survival rate. Bacillus subtilis, as a probiotic, may have beneficial effects on Y. tilapia with compound 1-deoxynojirimycin (DNJ), which has antibacterial activities. The effects of dietary probiotic supplementation on Y. tilapias were evaluated.ResultsJuvenile Y. tilapia was fed with B. subtilis for 56 d. Y. tilapia was infected by Aeromonas hydrophila and survival rate was compared. Dietary B. subtilis increased weight gain rate, specific growth, food conversion ratios and food intake rate of Y. tilapia. The diet improved the cumulative survival rate (CSR) of juvenile Y. tilapia when the concentration of B. subtilis was more than 2.05 × 1010 cfu/kg and CSR reached a maximum rate when the concentration of bacillus was 4.23 × 1010 (P < 0.05). Meanwhile, B. subtilis improved total antioxidant capacity (TAC), spleen index, the activities of serum lysozyme, alkaline phosphatase (ALP), superoxide dismutase (SOD) and catalase (CAT) (P < 0.05). In contrast, B. subtilis reduced serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) and C3 complement (P < 0.05). DNJ was isolated from secondary metabolisms and proved to increase the levels of SOD, CAT and reduce the levels of AST, ALT and MDA at cell levels. After A. hydrophila infection, DNJ prevented the reduction in survival rate of Y. tilapia (P < 0.05).Conclusions1-Deoxynojirimycin from Bacillus subtilis can be used to improve the growth performance of juvenile Y. tilapia by affecting its antioxidant and antibacterial activities.  相似文献   

7.
BackgroundThe main objective of this study was to isolate fungi associated with Anthopleura xanthogrammica and measure their antimicrobial and enzymatic activities. A total of 93 fungal strains associated with A. xanthogrammica were isolated in this study, of which 32 isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The antibacterial activities of 32 fungal isolates were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Edwardsiella tarda, Vibrio harveyi, Fusarium oxysporum, and Pyricularia oryzae by agar diffusion assay. Extracellular hydrolytic enzyme activities of the fungal isolates were determined by agar diffusion assays. Enzyme activities were detected from clear halo size.ResultsThe isolated fungi belonged to 18 genera within 7 taxonomic orders of 1 phylum. The genera Aspergillaceae were the most diverse and common. The antimicrobial activities of 32 isolates were evaluated, and 19 (59.4%) of fungi isolate displayed unique antimicrobial activities. All fungal strains displayed at least one enzyme activity. The most common enzyme activities in the fungi isolates were amylase and protease, while the least common were pectinase and xylanase.ConclusionsThis is first report on the sea anemone-derived fungi with antimicrobial and enzyme activities. Results indicated that sea anemone is a hot spot of fungal diversity and a rich resource of bioactive natural products.How to cite: Liu S, Ahmed S, Zhang C, et al. Diversity and antimicrobial activity of culturable fungi associated with sea anemone Anthopleura xanthogrammica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.003  相似文献   

8.
BackgroundCurrent commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields.ResultsTo improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran β-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced.ConclusionsOur method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.  相似文献   

9.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

10.
BackgroundThe increasing rate of breast cancer globally requires extraordinary efforts to discover new effective sources of chemotherapy with fewer side effects. Glutaminase-free l-asparaginase is a vital chemotherapeutic agent for various tumor malignancies. Microorganisms from extreme sources, such as marine bacteria, might have high l-asparaginase productivity and efficiency with exceptional antitumor action toward breast cancer cell lines.Resultsl-Asparaginase-producing bacteria, Bacillus velezensis isolated from marine sediments, were identified by 16S rRNA sequencing. l-Asparaginase production by immobilized cells was 61.04% higher than that by free cells fermentation. The significant productivity of enzyme occurred at 72 h, pH 6.5, 37°C, 100 rpm. Optimum carbon and nitrogen sources for enzyme production were glucose and NH4Cl, respectively. l-Asparaginase was free from glutaminase activity, which was crucial medically in terms of their severe side effects. The molecular weight of the purified enzyme is 39.7 KDa by SDS-PAGE analysis and was ideally active at pH 7.5 and 37°C. Notwithstanding, the highest stability of the enzyme was found at pH 8.5 and 70°C for 1 h. The enzyme kinetic parameters displayed Vmax at 41.49 μmol/mL/min and a Km of 3.6 × 10−5 M, which serve as a proof of the affinity to its substrate. The anticancer activity of the enzyme against breast adenocarcinoma cell lines demonstrated significant activity toward MDA-MB-231 cells when compared with MCF-7 cells with IC50 values of 12.6 ± 1.2 μg/mL and 17.3 ± 2.8 μg/mL, respectively.ConclusionThis study provides the first potential of glutaminase-free l-asparaginase production from the marine bacterium Bacillus velezensis as a prospect anticancer pharmaceutical agent for two different breast cancer cell lines.How to cite: Mostafa Y, Alrumman S, Alamri S, et al. Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.001.  相似文献   

11.
BackgroundThe Tibetan pig is a pig breed with excellent grazing characteristics indigenous to the Qinghai–Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig.ResultsA cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8–12 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24–48 h.ConclusionsThe isolated BY-2 strain rapidly grew and produced cellulase. We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics.  相似文献   

12.
13.
BackgroundLycium barbarum (also called wolfberry), a famous Chinese traditional medicine and food ingredient, is well recognized for its significant role in preventing obesity; however, the molecular mechanisms underlying its preventive effects on fat accumulation are not well understood yet. The aim of this study was to determine the effects and mechanism of Lycium barbarum polysaccharides (LBP) on the proliferation and differentiation of 3T3-L1 preadipocytes. MTT was used to detect the proliferation of 3T3-Ll preadipocytes. Oil red O staining and colorimetric analysis were used to detect cytosolic lipid accumulation during 3T3-L1 preadipocyte differentiation. Real-time fluorescent quantitative PCR (qPCR) technology was used to detect peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), adipocyte fatty-acid-binding protein (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL) expression.ResultsThe concentration of LBP from 25 to 200 μg/mL showed a tendency to inhibit the growth of preadipocytes at 24 h, and it inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. In the preadipocytes treated with 200 μg/mL LBP, there were reduced lipid droplets in the cytoplasm, and its effect was opposite to that of rosiglitazone (ROS), which significantly reduced the PPARγ, C/EBPα, aP2, FAS, and LPL mRNA expression of adipocytes.ConclusionsLBP exerts inhibitive effects on the proliferation and differentiation of 3T3-L1 preadipocytes and decreases the cytoplasm accumulation of lipid droplets during induced differentiation of preadipocytes toward mature cells. Above phenomenon might link to lowered expression of PPARγ, C/EBPα, aP2, FAS, and LPL after LBP treatment. Thus, LBP could serve as a potential plant extract to treat human obesity or improve farm animal carcass quality via adjusting lipid metabolism.How to cite: Xu X, Chen W, Yu S, et al. Inhibition of preadipocyte differentiation by Lycium barbarum polysaccharide treatment in 3T3-L1 cultures. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2021.01.003  相似文献   

14.
BackgroundLaccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris.ResultsA D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G.ConclusionsThe productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.  相似文献   

15.
BackgroundThe heterologous expression of parasitic proteins is challenging because the sequence composition often differs significantly from host preferences. However, the production of such proteins is important because they are potential drug targets and can be screened for interactions with new lead compounds. Here we compared two expression systems for the production of an active recombinant aldehyde dehydrogenase (SmALDH_312) from Schistosoma mansoni, which causes the neglected tropical disease schistosomiasis.ResultsWe produced SmALDH_312 successfully in the bacterium Escherichia coli and in the baculovirus expression vector system (BEVS). Both versions of the recombinant protein were found to be active in vitro, but the BEVS-derived enzyme showed 3.7-fold higher specific activity and was selected for further characterization. We investigated the influence of Mg2+, Ca2+ and Mn2+, and found out that the specific activity of the enzyme increased 1.5-fold in the presence of 0.5 mM Mg2+. Finally, we characterized the kinetic properties of the enzyme using a design-of-experiment approach, revealing optimal activity at pH 7.6 and 41°C.ConclusionsAlthough, E. coli has many advantages, such as rapid expression, high yields and low costs, this system was outperformed by BEVS for the production of a schistosome ALDH. BEVS therefore provides an opportunity for the expression and subsequent evaluation of schistosome enzymes as drug targets.How to cite: Harnischfeger J, Beutler M, Salzig D, et al. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.08.002  相似文献   

16.
BackgroundOptimization of nutrient feeding was developed to improve the growth of Bacillus subtilis in fed batch fermentation to increase the production of jiean-peptide (JAA). A central composite design (CCD) was used to obtain a model describing the relationship between glucose, total nitrogen, and the maximum cell dry weight in the culture broth with fed batch fermentation in a 5 L fermentor.ResultsThe results were analyzed using response surface methodology (RSM), and the optimized values of glucose and total nitrogen concentration were 30.70 g/L and 1.68 g/L in the culture, respectively. The highest cell dry weight was improved to 77.50 g/L in fed batch fermentation, which is 280% higher than the batch fermentation concentration (20.37 g/L). This led to a 44% increase of JAA production in fed batch fermentation as compared to the production of batch fermentation.ConclusionThe results of this work improve the present production of JAA and may be adopted for other objective products' production.  相似文献   

17.
18.
BackgroundThe aim of this work was to purify and characterize exo-β-1,3-glucanase, namely, TtBgnA, from the thermophilic fungus Thielavia terrestris Co3Bag1 and to identify the purified enzyme.ResultsThe thermophilic biomass-degrading fungus T. terrestris Co3Bag1 displayed β-1,3-glucanase activity when grown on 1% glucose. An exo-β-1,3-glucanase, with an estimated molecular mass of 129 kDa, named TtBgnA, was purified from culture filtrates from T. terrestris Co3Bag1. The enzyme exhibited optimum activity at pH 6.0 and 70°C and half-lives (t1/2) of 54 and 37 min at 50 and 60°C, respectively. Substrate specificity analysis showed that laminarin was the best substrate studied for TtBgnA. When laminarin was used as the substrate, the apparent KM and Vmax values were determined to be 2.2 mg mL-1 and 10.8 U/mg, respectively. Analysis of hydrolysis products by thin-layer chromatography (TLC) revealed that TtBgnA displays an exo mode of action. Additionally, the enzyme was partially sequenced by tandem mass spectrometry (MS/MS), and the results suggested that TtBgnA from T. terrestris Co3Bag1 could be classified as a member of the GH-31 family.ConclusionsThis report thus describes the purification and characterization of TtBgnA, a novel exo-β-1,3-glucanase of the GH-31 family from the thermophilic fungus T. terrestris Co3Bag1. Based on the biochemical properties displayed by TtBgnA, the enzyme could be considered as a candidate for potential biotechnological applications.How to cite: Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, et al. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.07.001  相似文献   

19.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号