首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
直流电弧等离子体是在电场作用下,气体中存在的自由电子受到电场加速,其速度(动能)达到某一值时,中性原子或分子被电离而获得更多的自由电子,这些电子进一步加速激发其它中性粒子产生类似于雪崩现象的电离过程,结果使气体放电形成等离子体。利用等离子体的高温(可达3000K-30000K)使金属熔化蒸发形成气态金属原子,再将气态金...  相似文献   

2.
等离子体     
原子是由原子核和按一定轨道环绕原子核运动的电子组成的。气体原子中的电子在温度或射线的作用下,挣脱了自己的运动轨道而离去,这种现象叫做电离。气体电离后,失去了电子的原子变成了带正电荷的粒子,叫做正离子,离去的电子是带负电荷的粒子。假设在极高的温度下,一团气体中大部分原子都失夫了它原子核周围的电子(通常只失夫一个电子),结果便变成高度电离的气体。在高度电离的气体中带正电荷粒子的数目和带负电荷粒子的数目几乎相等,因此就称作等离子体。任何物质,当温度达到极高时,就成为等离子体。它是物质三态(固态、  相似文献   

3.
物质三态(固态、液态和气态)的概念,是大家所熟知的。在固态中,一般原子都处在严格确定的点上,并回绕这些点振动。液态时,原子和分子的运动比较自由,气态中的原子和分子的运动就更自由更无秩序了。如果原子一旦失去电子,成为离子,则气体具有更大的活动性。没有结合在一起的原子核和电子的“混合物”,叫等离子体,这是物质的第四态。  相似文献   

4.
等离子体是一种带电离子和电子的混合物,只要原子与它们的电子发生分离,等离子体就会产生。太阳耀斑和球形闪电都属于等离子体。由于离子运动的速度极快,等离子体出现的时候情景非常火爆,温度可达上千摄氏度。但是科学家们却如同将闪电玩弄于鼓掌之间的众神,将狂躁的等离子体纳入一只小小的铅笔状装置中,使其为人类造福。人们将等离子体应用于医疗已经不是一件新鲜事儿了,不过一直以来人们所使用的装置又沉又大,像只箱子一样搁在桌子上。不仅如此,那个大块头所发出的等离子气体束只有几毫米长,至少比室温高出10摄氏度,对人体有害,而且还有产…  相似文献   

5.
固体冰加热到一定程度会融化成液态水;液态水的温度再升高便可得到水蒸气;水蒸气的温度继续升高又可变成等离子体。对于气态物质,当它的温度升高到几千摄氏度以上的时候,物质的原子就开始抛掉身上的电子,于是带负电的电子不再受到原子核的约束,开始自由自在游逛,而原子也成为带正电的离子(即成为电离化状态);温度愈高,原子脱落的电子愈多,等离子状态愈稳定。除了高温能够使气态物质转变为等离子体以外,用强大的紫外线、x射线和γ射线来照射气体,也会使气  相似文献   

6.
颜君 《科学中国人》2004,(10):52-53
原子分子普遍地存在于地球大气.天体与星球空间及等离子体中。原子分子物理是重要的基础性学科,同时,又是许多学科的交叉点。这就决定了原子分子数据具有广泛的重要的应用背景。以下面的应用为例.可以看出原子分子数据的重要性:  相似文献   

7.
1.旋转开关准分子激光器 1.1准分子激光及特点。准分子激光器它的工作物质是准分子气体,这种气体不同于我们常见的CO_2、N_2等气体,这些气体在标准状态下如果没有外来影响,如光照、加热,不会自行分解成其他原子或分子。而准分子则不然,在标准状态下,它从产生到消失的时间很短,只有几十纳秒,并自动分解成其他原子或分子,为与通常意义的分子相区别,人们就把这类气体分子  相似文献   

8.
本文针对微波等离子体研究成本高的问题,提出利用有限元方法,求解多种物理方程,仿真等离子体瞬态机理。仿真描述等离子体放电过程,获取等离子体在大气压微波激励产生和维持的机制,给出电子密度、电子温度、气体温度的瞬态与空间变化,数值仿真的方法节约成本、缩短研究周期,且能够更清晰的描述放电过程的瞬态物理特性,是研究气体放电等离子体的非常重要的途径。点评人:华伟,电子信息学院副教授,研究方向:微波等离子体、微波化学、射频电路。  相似文献   

9.
要使原子电离,外界必须对原子做功,使电子摆脱它与原子核之间的库仑力的束缚。而原子的可能状态是不连续的,吸收能量也是一份一份的,这就使得原子并非能将所有的光子都吸收。当可见光光子不能被原子吸收或有极少量能量被吸收,这样的可见光光子透过物体后,我们看到的物体就是透明的。任何物体都有可能达到“透明”状态。根据热力学的相关知识,我们知道,物体的温度越低,其分子(或原子或离子等)的动能就会越小,如果要克服原子间的库仑力,使原子(或分子或离子)电离就需要更大的能量。当可见光的能量hv相似文献   

10.
自由基是指带有来成对电子的分子、原子或离子.由于未成对电子总是有成对的趋向,因此自由基很容易发生失去或得到电子的反应而显示出较活泼的化学性质.  相似文献   

11.
张家界不仅有世界绝美的风景,而且空气中负离子浓度之高也是世界少有的。 1889年,德国科学家爱尔斯德和格特尔发现了空气中存在负离子后,人们便开始了对空气负离子的研究。空气是由无数分子组成的,一般呈中性。大气中的分子或原子在机械、光、静电、化学或生物能作用发生电离反应,即原子外层的电子运动提高到一定的速度,就会脱离轨道远走高飞,当这个“逃跑电子”被其他中性原子“俘获”后,中性原子承载了负电荷,就成为负离子。  相似文献   

12.
信息物理     
正我国首次利用激光产生反物质中科院上海光学精密机械研究所沈百飞等利用超强超短激光,成功产生超快正电子源,这一发现将在材料的无损探测、激光驱动正负电子对撞机、癌症诊断等领域具有重大应用价值,该研究发表于《等离子体物理》。飞秒拍瓦激光装置和高压气体靶相互作用后产生大量高能电子,高能电子和高Z材料靶相互作用,由韧制辐射机制产生高强度伽马射线;伽马射线再和  相似文献   

13.
霓虹灯是一种气体放电灯。在制作霓虹灯时,首先将封装有电极的细长玻璃管内的普通空气抽出,然后充入惰性气体(氦气、氖气、氮气)或水银蒸气。这样,当霓虹灯的电极被加上高电压后,在电场的作用下电极发射的电子撞击气体原子,大量的气体原子被激发和电离,从而“充满”能量。这些能量以光辐射射的形式被释放,霓虹灯就会发出光了。霓红灯的颜色是由充入的气体种类决定的。霓红灯为什么会发出五颜六色的光?@韩雯!江苏吴江  相似文献   

14.
正自由基理论提到衰老是由自由基引起的。自由基是一种活性较高且带有不成对电子的原子或分子。当机体处于正常状态下时,体内适量的自由基可以促进细胞增殖,杀灭体内细菌,发挥细胞信号因子作用等。当机体受到刺激时,自由基含量过多,因含有不成对电子,且反应活性高,会不断夺取其他电子,可引发链式自由基反应。因此,过量的自由基会导致机体氧化损伤。食源性多糖来源广泛,种类多,有增强免疫、抗肿瘤和抗氧化等多种作用,可通过Keap1-Nrf2/ARE信号通路对氧化损伤进行调控,在预防和治疗氧化损伤引起的疾病中发挥着重要作用。且有低毒性,副作用小等优势,因此受到了越来越多的关注。  相似文献   

15.
利用杂化密度泛函B3LYP方法,研究了硼氧小分子在铂团簇的表面吸附体系,研究的物性涉及不同自旋下团簇的几何结构、稳定性、电子结构、解离能和平均原子结合能等. 计算结果表明:BO两种原子作为一个分子整体吸附于铂团簇表面,其吸附方式随团簇尺寸的变化而变化;自然布居和Mulliken布居显示,电荷由铂原子转移到BO分子整体. 此外,解离能和平均原子结合能表明四重态Pt4BO的基态结构具有最大的相对稳定性.  相似文献   

16.
中国科学院合肥物质科学研究院(技术生物与农业工程研究所)黄青研究员带领的团队近年来在研究等离子体与生物及生物分子作用机理、低温等离子体生物技术及应用等方面取得进展.等离子体放电是得到低能带电粒子的一种重要方式,其放电过程中产生的带正电的离子和负电的电子与水分子碰撞产生活性氧和自由基,并伴有紫外线和冲击波等,作用于生物及生物分子,可诱导丰富的生物学效应.  相似文献   

17.
正当微观世界中结构、运动与变化规律被纳入量子力学的范畴时,科学家们才更加深切地意识到,来自微观世界的分子、原子,甚至是电子,居然能爆发于如此巨大的能量,于是有关原子、电子之类微小物质的特性被代代科学家们一一揭开。1995年毕业于上海交通大学物理系的王兴军,在学习过程中越来越察觉物理学除了虚拟的概念理论之外,还需要转化为能够推动社会发展的产品。他在入读复旦大学物理系后,迅速走进更贴近社会发展需求的材料物  相似文献   

18.
徐阳 《世界发明》2002,25(2):22-22
纳米材料是由几十个到数千个原子或分子组合而成。这些原子或分子“组合”在一起时,被称为“超分子”或“人工分子”。由于内部的强关联性,它的熔点、磁性、电容性、导电性、发光性和水溶性都有重大变化。  相似文献   

19.
正2017年3月初,美国麻省理工学院的物理学家在《自然》杂志上发文宣称,他们利用激光冷却的方法,将一定数量的两组钠原子冷却到绝对零度(-273.15℃)附近,然后将两组量子态进行态的叠加,得到了一种新的物质形态——超固体。也许你听说过气体、液体、固体、等离子体,以往我们也介绍过超导体,  相似文献   

20.
高功率脉冲磁控溅射(HIPIMS)作为一项极具发展前途的物理气相沉积新技术,近年来引起学术界和工业界的广泛关注.HIPIMS技术(也被称为HPPMS)可以提供足够的放电功率来获得极高的电流密度,数值达到几个A·cm-2;同时,可以得到1019m-3量级的高密度等离子体.溅射过程中独特的等离子体特性表明了该技术的突出优势,因此可实现沉积过程的控制和薄膜性能的优化.文中对HIPIMS技术的IV放电特征,电源设计,以及溅射原子离化率进行深入分析.同时,回顾讨论等离子体时间空间演变规律,离化基团输运,薄膜沉积速率等问题的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号