首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
This paper presents an integrated and practical control strategy to solve the leader–follower quadcopter formation flight control problem. To be specific, this control strategy is designed for the follower quadcopter to keep the specified formation shape and avoid the obstacles during flight. The proposed control scheme uses a hierarchical approach consisting of model predictive controller (MPC) in the upper layer with a robust feedback linearization controller in the bottom layer. The MPC controller generates the optimized collision-free state reference trajectory which satisfies all relevant constraints and robust to the input disturbances, while the robust feedback linearization controller tracks the optimal state reference and suppresses any tracking errors during the MPC update interval. In the top-layer MPC, two modifications, i.e. the control input hold and variable prediction horizon, are made and combined to allow for the practical online formation flight implementation. Furthermore, the existing MPC obstacle avoidance scheme has been extended to account for small non-apriorily known obstacles. The whole system is proved to be stable, computationally feasible and able to reach the desired formation configuration in finite time. Formation flight experiments are set up in Vicon motion-capture environment and the flight results demonstrate the effectiveness of the proposed formation flight architecture.  相似文献   

2.
刘飞 《中国科技纵横》2011,(22):320-321
本文应用状态反馈线性化方法对电枢反应非线性进行线性化处理,通过适当的非线性状态变换和输入变换,将速度非线性控制系统综合问题转化为线性系统的综合问题,并采用对系统参数变化及外界扰动具有较强鲁棒性的滑模变结构控制方法,实现了直流电机速度的跟踪控制。  相似文献   

3.
Advanced fault detection and accommodation schemes are required for ensuring efficient and reliable operation of modern wind turbines. This paper presents a novel approach in designing a fault detection and diagnosis (FDD) and fault-tolerant control (FTC) scheme for a wind turbine using fuzzy modeling, identification and control techniques. First, an improved gain-scheduled proportional-integral (PI) control system based on fuzzy gain scheduling (FGS) technique for multi-input and multi-output wind turbine system is designed. Then, to accommodate sensor faults and based on a signal correction algorithm, an active fault-tolerant control system (AFTCS) is developed as an extension of the gain-scheduled PI control system. The AFTCS exploits the fault information from a model-based FDD scheme developed using fuzzy modeling and identification method. The proposed schemes are evaluated by a series of simulations on a well-known large off-shore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios. All results indicate high effectiveness and robustness of the designed control systems in both fault-free and faulty operations of the wind turbine.  相似文献   

4.
5.
In order to improve the anti-disturbance performance of a bearingless induction motor (BIM) control system, a fractional-order sliding mode control (FOSMC) strategy based on improved load torque observer is proposed on the basis of the sliding mode speed regulation system. Using the information memory and genetic characteristics of the fractional calculus operator, the fractional integral term of the speed error is introduced in the design of the traditional sliding surface, which reduces the influence of disturbance on the speed regulation system. The fractional-order sliding mode control law is derived based on the BIM mathematical model, and the stability of the control law is proved by Lyapunov theorem. An improved observer is constructed based on the BIM state equations, and the real-time observed load torque is introduced into the fractional-order sliding mode controller. To improve the observer's convergence speed, the proportional integral form is used to replace the integral form in the traditional reduced order load observer. And the state error feedback coefficients of the improved load observer are calculated. Both simulation and experimental results verified the effectiveness of the proposed control strategy.  相似文献   

6.
For a class of flexible joint manipulators actuated by DC-motors, the problem of modeling and trajectory tracking control under random disturbances is considered in this paper. How to describe random disturbances and introduce them to the system is the key for modeling and control. According to the relative motion and the equivalent circuit, the effect of random disturbances can be regarded as torque or voltage disturbed by colored noises. Thus, a random model is constructed. By using the vectorial backstepping and the technique of separating out the noise from coupled terms, a state feedback tracking controller is designed such that the state of closed-loop system has an asymptotic gain in the 2nd moment and the mean square of tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The effectiveness of the proposed scheme is demonstrated by the simulation results for a two-link robot.  相似文献   

7.
This paper presents the design of a hybrid partial feedback linearization and deadbeat control scheme for a nonlinear gantry crane with friction to control its position and sway angle. The partial feedback linearization is used to linearize the nonlinear model and to stabilize its internal dynamics. In many crane applications, it's necessary to accelerate the system response. As a result, this will cause oscillation in the position as well as the sway angle. So, the deadbeat controller is added to get the desirable accelerated response without any oscillation or adverse effects on the internal dynamics stability. By using Lyapunov stability method, the proposed scheme is proved to be globally stable, with converging tracking errors to the desired performance. The simulation results are accomplished to evaluate the effectiveness of the proposed scheme and to demonstrate its reliability to control crane systems with comparative results.  相似文献   

8.
The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.  相似文献   

9.
This paper develops a super-twisting sliding-mode observer-based model reference adaptive speed controller (STSMO-MRA-SC) for the permanent-magnet synchronous motor-based variable speed drive (PMSM-VSD) system. A stable first-order linear model is selected as the reference model to describe the required speed trajectory. To make the actual speed of the PMSM-VSD system follow this trajectory, the proposed STSMO-MRA-SC comprises three terms: (1) the stabilization term dependent on known parameters of the motion dynamics and the selected reference model for stabilizing the speed tracking error dynamics asymptotically; (2) the disturbance compensation term based on the STSMO for compensating the lumped disturbance in the speed tracking error dynamics; and (3) the error compensation term updated online by the adaptive law for confronting the estimation error of the STSMO in practice. Comparative experimental tests among the classic MRA-SC, the radial basis function neural network-based MRA-SC and the proposed STSMO-MRA-SC are performed. Experimental results have verified the effectiveness and the superiority of the proposed STSMO-MRA-SC.  相似文献   

10.
High frequency measurement noise rejection based on disturbance observer   总被引:1,自引:0,他引:1  
A new feedback controller architecture based on disturbance observer (DOB) is proposed to deal with high-frequency measurement noise for high accuracy performance. Compared with the classical DOB-based control system the proposed control structure adds another controller to compensate the feedback of system output. Thus, these influences of both high-frequency measurement noise and low-frequency external disturbance on the system output could be eliminated simultaneously. Meanwhile, the new control system architecture can potentially overcome the conflict between performance and robustness in the traditional feedback framework. A numerical example is included at the end of this paper to illustrate the effectiveness.  相似文献   

11.
In this paper, an innovative piezo-hydraulic actuator (PHA) is considered that is intended to realize a fully variable valve control in camless combustion engines. A nonlinear model of the hydraulic system part is presented along with linear models of the remaining system parts. Accurate tracking of desired valve trajectories as well as soft landing despite disturbance forces and measurement noise is achieved using a combined control strategy. It consists of an input–output linearization of the nonlinear part as well as feedforward and linear quadratic integral (LQI) feedback control of the linear system part. Given measurements of the valve spool and engine valve positions, a Cascaded Extended Kalman Filter (CEKF) structure provides estimates for the immeasurable states. Simulation results confirm the effectiveness of the proposed approach.  相似文献   

12.
This paper investigates the frequency change problem of hydraulic turbine regulating system based on terminal sliding mode control method. By introducing a novel terminal sliding mode surface, a global fast terminal sliding mode controller is designed for the closed loop. This controller eliminates the slow convergence problem which arises in the terminal sliding mode control when the error signal is not near the equilibrium. Meanwhile, following consideration of the error caused by the actuator dead zone, an adaptive RBF estimator based on sliding mode surface is proposed. Through the dead zone error estimation for feed-forward compensation, the composite terminal sliding mode controller has been verified to possess an excellent performance without sacrificing disturbance rejection robustness and stability. Simulations have been carried out to validate the superiority of our proposed methods in comparison with other two other kinds of sliding mode control methods and the commonly used PID and FOPID controller. It is shown that the simulation results are in good agreement with the theoretical analysis.  相似文献   

13.
Noise Induced Tracking Error (NITE) refers to the tracking error of the mean of the output in feedback control systems with nonlinear instrumentation subject to zero-mean measurement noise. Most of the previous work rely on the stochastic averaging for NITE analysis, the validity of which requires that the bandwidth of the zero mean measurement noise is much higher than that of the system. This is because the results obtained by stochastic averaging are asymptotic with respect to the noise bandwidth. Due to the asymptotic nature of the analysis tool, it is not straightforward to provide a quantitative argument for high bandwidth. An alternative method in the literature that can analyze NITE is stochastic linearization for random input, which is analogous to the well known describing function approach for sinusoidal input. Unlike stochastic averaging, stochastic linearization is not an asymptotic approximation. Therefore, analysis can be carried out for any given noise bandwidth. We carry out NITE analysis using stochastic linearization for a class of LPNI systems that are prone to NITE; identify the system conditions under which the averaging analysis of NITE may yield inaccurate results for a finite noise bandwidth; and prove that the results from the two methods agree as the noise bandwidth approaches infinity. In addition, an existing NITE mitigation strategy is extended based on the proposed method. Numerical examples are given to illustrate the results.  相似文献   

14.
The hydraulic turbine governing system plays an indispensable role in maintaining the stability of electrical power system. In this paper, synergetic control theory is introduced to enhance the regulating ability of the hydraulic turbine governing system. For the purpose of describing the characteristics of objective system and deducing the synergetic control rule, a nonlinear mathematic model of a hydraulic turbine governing system with long tail race and two surge tanks is established. Furthermore, the nonlinear characteristic of the hydraulic turbine is described by six variable partial derivatives. For further investigation, the hydraulic turbine governing system is conducted to running under load condition when its coaxial generator connects to an infinite bus. Simulation experiments have been made under both load disturbance and three-phase short circuit fault conditions to compare the dynamic performances of proposed synergetic governing controller and classic PID controller. The results indicate that the proposed synergetic governing controller is an effective alternative in normal condition and a superior one in emergency. Moreover, the robustness of synergetic governing controller has also been discussed at the end of this paper.  相似文献   

15.
This paper proposes a sensorless fault-tolerant control strategy solving the tracking problem of the maximum delivered power characteristic for a wind energy conversion system equipped with a permanent magnet synchronous generator. A previously published control scheme ensuring the maximum power efficiency of the wind turbine, not requiring feedback information about rotor speed and position, and about wind velocity, is here extended to make the control scheme fault-tolerant with respect to possible electrical faults affecting the equations of the permanent magnet synchronous generator (PMSG) in the original (α, β) frame. The control law is based on a number of interconnected nonlinear observers. Closed loop asymptotic vanishing of the observation errors is proved. The proposed control solution has been validated on the National Renewable Energy Laboratory (NREL) 5-MW three-blade wind turbine model.  相似文献   

16.
The problem of modeling and stabilization of a wireless network control system (NCS) is considered in this paper, where packet loss and time delay exist simultaneously in the wireless network. A discrete-time switched system with time-varying delay model is first proposed to describe the system closed by a static state feedback controller. A sufficient criteria for the discrete-time switched system with time-varying delay to be stable is proposed, based on which, the corresponding state feedback controller is obtained by solving a set of linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed method.  相似文献   

17.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

18.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

19.
This paper investigates the design problem of asynchronous output feedback controller via sliding mode for a class of discrete-time fuzzy Markovian jump systems. Considering the non-synchronization phenomenon between the Markovian jump systems and the sliding controller, an asynchronous control method with a stochastic variable is adopted to describe the connections of the systems and controller. On the other hand, not full of states are accessible for the controller since it is impossible or very expensive to estimate all of states, while the output information can be acquired to the controller all the time. Based on the above aspects, the asynchronous output feedback controller via sliding mode for fuzzy Markovian jump systems is investigated to ensure the sliding mode dynamics to be stochastically stable, besides, several sufficient conditions are given to find a set of feasible solutions of the controller parameters. The asynchronous sliding mode control law is synthesized to guarantee the reachability of the trajectories of the closed-loop systems. Finally, a simulation example is to verify the effectiveness of the control strategy.  相似文献   

20.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号