首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

2.
A control scheme based on dynamic gains is proposed for the time-varying nonlinear time-delay systems with unknown control coefficients. A class of Nussbaum functions are introduced to deal with the problem of unknown control directions. Dynamic gains technique and Lyapunov–Krasovskii functional are developed to handle the time delays in nonlinear system. It is shown that the system state is regulated to origin asymptotically, and the boundedness of all closed-loop signals is guaranteed. Simulation results are provided to demonstrate the effectiveness of the proposed methodology.  相似文献   

3.
For a class of large-scale nonlinear time-delay systems with uncertain output equations, the problem of global state asymptotic regulation is addressed by output feedback. The class of systems under consideration are subject to feedforward growth conditions with unknown growth rate and time delays in inputs and outputs. To deal with the system uncertainties and the unknown delays, a novel low-gain observer with adaptive gain is firstly proposed; next, an adaptive output feedback delay-free controller is constructed by combining Lyapunov-Krasovskii functional with backstepping algorithm. Compared with the existing results, the controllers proposed are capable of handling both the uncertain output functions and the unknown time delays in inputs and outputs. With the help of dynamic scaling technique, it is shown that the closed-loop states converge asymptotically to zero, while the adaptive gain is bounded globally. Finally, the effectiveness of our control schemes are illustrated by three examples.  相似文献   

4.
This paper investigates the adaptive fuzzy control design problem of multi-input and multi-output (MIMO) non-strict feedback nonlinear systems. The considered control systems contain unknown control directions and dead zones. Fuzzy logic systems (FLSs) are utilized to approximate the unknown nonlinear functions, and the state observers are designed to estimate immeasurable states. By constructing a dead zone compensator and introducing a Nussbaum gain function into the backstepping technique, an adaptive fuzzy output feedback control method is developed. The proposed adaptive fuzzy controller is proved to guarantee the semi-globally uniformly ultimately bounded (SGUUB) of the closed-loop system, and can solve the control design problems of unmeasured states, unknown control directions and dead zones. The simulation results are given to demonstrate the effectiveness of the proposed control method.  相似文献   

5.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

6.
This paper proposes a fuzzy model predictive control (FMPC) combined with the modified Smith predictor for networked control systems (NCSs). The network delays and data dropouts are problems, which greatly reduce the controller performance. For the proposed controller, the model of the controlled system is identified on-line using the Takagi – Sugeno (T-S) fuzzy models based on the Lyapunov function. There are two internal loops in the proposed structure. The first is the loop around the FMPC, which predicts the future outputs. The other is the loop around the plant to give the error between the system model and the actual plant. The proposed controller is designed for controlling a DC servo system through a wireless network to improve the system response. The practical results based on MATLAB/SIMULINK are established. The practical results are indicated that the proposed controller is able to respond the networked time delay and data dropouts compared to other controllers.  相似文献   

7.
This study focused on controlling a class of nonlinear systems with actuation time delays. We proposed a novel output-feedback controller in which the magnitude of the input commands is saturated and can be adjusted by varying control parameters. In this design, a predictor term is used to compensate for delays in the input, and auxiliary systems are exploited to provide a priori bounded control commands and account for the lack of full-state information. The stability analysis results revealed that uniformly ultimately bounded tracking is guaranteed despite modeling uncertainties and additive time-varying disturbances in the system dynamics. The performance of the controller was evaluated through simulation.  相似文献   

8.
This paper concentrates on proposing a novel finite-time tracking control algorithm for a kind of nonlinear systems with input quantization and unknown control directions. The nonlinear functions in the system are approximated by the means of strong approximation capability of the fuzzy logic systems. Firstly, the nonlinear system with unknown control directions is transformed into an equivalent system with known control gains by coordinate transformation. Secondly, the unknown system states are estimated by a designed fuzzy state observer, and the disturbance observer is constructed to track the external disturbances. The command filtering method is proposed to approach the problem of “explosion of complexity” existed in the conventional backstepping design process. In this system, the difficulties caused by unknown control directions are solved via the Nussbaum gain approach. Finally, based on the fuzzy state observer, the controller of the original system is obtained via using the transformed system by the backstepping method. The boundedness of all signals and the convergence of tracking and observer errors at the origin are ensured for the closed-loop system, and demonstrated by the simulation result in this paper.  相似文献   

9.
This paper investigates a composite controller for load frequency control (LFC) in multi-region interconnected power systems via sliding mode observer design. State observers (SOs) and disturbance observers (DOs) are implied for the LFC based on the load variations with communication delays and quantization output measurements. A nonlinear integral sliding surface combined with a composite controller is developed to optimize control performance. Moreover, a three-area power system model is used to demonstrate the effectiveness of the proposed scheme in the illustrative example, confirming that frequency deviations can be rejected despite delays, uncertainties, and quantization during transmission.  相似文献   

10.
Oscillatory systems with time delays exist widely in actual industrial process. This paper discusses the design and tuning of linear active disturbance rejection controller (LADRC) for the oscillatory systems with large time delays. First, internal model controllers (IMC) are designed for the oscillatory systems to compensate the time-delay and cancel the complex poles; then they are implemented with the general LADRC structures and approximated with observer-bandwidth-based LADRCs. Afterwards, the third-order LADRC tuning formulas for oscillatory systems are derived from the IMC controllers. Simulation examples and load frequency control(LFC) in power system with communication delay are used to test the applicability of the proposed tuning formula.  相似文献   

11.
In this paper, we consider the problem of Hopf bifurcation control for a complex network model with time delays. We know that for the system without control, as the positive gain parameter of the system passes a critical point, Hopf bifurcation occurs. To control the Hopf bifurcation, a time-delayed feedback controller is proposed to delay the onset of an inherent bifurcation when such bifurcation is undesired. Furthermore, we can also change the stability and direction of bifurcating periodic solutions by choosing appropriate control parameters. Numerical simulation results confirm that the new feedback controller using time delay is efficient in controlling Hopf bifurcation.  相似文献   

12.
This article investigates the order-reduction method for multi-spacecraft cooperative tracking control problems considering non-uniform time delays. The tracking error system is constructed as a linear time-varying (LTV) system since the orbit of the reference point is an ellipse. To facilitate the controller design, a model transformation method is proposed to transform the LTV system into a linear time-invariant (LTI) system with norm-bounded uncertainties. By using the sliding-mode control (SMC) technique, a delay-dependent cooperative tracking controller is designed to guarantee multiple followers to track the leader. Then, an order-reduction method is proposed to reduce the order of sufficient conditions in the form of linear matrix inequalities (LMIs), which make sure that the tracking error system is asymptotically stable. A numerical example is finally provided to illustrate the effectiveness of the designed controller and the improved performance of the order-reduction method.  相似文献   

13.
This paper investigates the precise containment control problem for nonlinear multi-agent systems (MAS) subject to non-vanishing uncertainties and unknown non-identical control directions under directed communication topology. Due to the existence of the inherent non-vanishing/non-parametric uncertainties and unknown control directions, the precise (zero-error) containment control synthesis becomes nontrivial. The underlying problem becomes even complicated if the convergence rate is required to be pre-specified. This work aims at circumventing the aforementioned difficulties to derive a precise containment control solution. The salient features behind the derived algorithms are: i) the non-vanishing uncertainties are completely rejected; ii) the containment error is regulated to zero at prescribed convergence rate, in spite of the non-vanishing uncertainties and unknown non-identical control directions; and iii) the full-state containment rather than output containment is achieved. A simulation example is given to confirm the effectiveness of the proposed method.  相似文献   

14.
The synchronization for a class of switched uncertain neural networks (NNs) with mixed delays and sampled-data control is researched in this paper. When a switching signal occurs in a sampling interval, the controller cannot switch until the next sampling instant. There is a mismatch between the system and the controller. Thus, we devise the control strategy to guarantee that the switched NNs can be synchronized. The proposed Lyapunov-Krasovskii functional (LKF) can make full use of system information. By use of an improved integral inequality, some sufficient stability conditions formed by linear matrix inequalities (LMIs) are derived for the synchronization of switched NNs. Average dwell time (ADT) is obtained as a form of inequality that includes the sampling interval. At last, the feasibility of the proposed method is proved by some numerical examples.  相似文献   

15.
This paper presents a method for designing dynamic event-triggered controller of networked control systems (NCSs) with uncertainty and time delays. Under the condition that the Lyapunov function of the system is allowed to increase at each jump point, the globally exponentially stable (GES) of the system can be achieved by using the Riccati differential equation and the principle of average dwell time (ADT). The minimum allowable inter-event interval is obtained by limiting the increment of the Lyapunov function within the transmission interval. Both the static event triggering and no transmission delay are included in the designed dynamic event triggering mechanism as special cases. A numerical example is given to verify the correctness and validity of the proposed method.  相似文献   

16.
The consensus problem for networks of multiple agents consists in reaching an agreement between certain coordinates of interest using a distributed controller. It may be desirable that all the agents find a consensus at a given desired leader coordinate (Leader Follower Consensus Problem LFCP), or it may be only necessary that they agree at a certain coordinates value (Leaderless Consensus Problem LCP). Consensus has many practical applications in robot networks systems, where the interconnection of the agents may present variable time delays, hence rendering the stability analysis and control design more complex. Another problem that may arise is the possible lack of velocity measurements. In this work, a Proportional plus damping injection (P + d) controller together with a linear velocity observer is introduced. Our approach is able to solve both the LFCP and the LCP in networks of robots modeled as undirected weighted graphs with unknown asymmetric (bounded) variable time delays. Local (semi global) asymptotic stability is proven and simulation results are provided to test the performance of the proposed scheme.  相似文献   

17.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

18.
This paper is concerned with the problem of delayed proportional-integral control of an offshore platform subject to self-excited nonlinear hydrodynamic force. By using current and distributed delayed states, a delayed proportional-integral controller is designed to stabilize the offshore platform. Under such a controller, the closed-loop system of the offshore platform is modeled as a nonlinear system with discrete and distributed delays, which allows us to employ the Lyapnov–Krasovskii functional method to analyze its asymptotic stability. Since an affine Wirtinger-based inequality is exploited to estimate the derivative of the Lyapunov–Krasovskii functional, a new stability criterion for the closed-loop system is derived, based on which, suitable control gains can be designed provided that a set of linear matrix inequalities are feasible. It is found through simulation results that the proposed control scheme can improve the control performance remarkably. Moreover, (i) compared with the existing delay-free controllers, the proposed controller can reduce the required control force and the oscillation amplitudes of the platform significantly; and (ii) compared with several delayed controllers, the proposed controller requires less control cost.  相似文献   

19.
This paper studies the consensus problem for a class of nonlinear multi-agent systems with asymmetric time-varying output constraints and completely unknown non-identical control directions. Firstly, in order to deal with the problem of asymmetric time-varying output constraints, the original output-constrained multi-agent systems are transformed into new unconstrained multi-agent systems by constructing the state transformation for each agent. Secondly, the emergence of multiple Nussbaum-type function terms is avoided by introducing novel sliding-mode-esque auxiliary variables and consensus estimate variables, which allows the control directions to be completely unknown non-identical. Thirdly, a novel control strategy is proposed by combining novel variables with state transformation method for the first time, which makes the design of distributed consensus protocol more concise. Through Lyapunov stability analysis, the proposed distributed protocol ensures that the output constraints are never violated and the consensus can be achieved asymptotically. Finally, a practical simulation example is given to demonstrate the effectiveness of the proposed distributed consensus protocol.  相似文献   

20.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号