首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper addresses the problem of robust adaptive attitude tracking control for spacecraft with mismatched and matched uncertainties. The idea of disturbance estimation and compensation is introduced into the control design. First, finite-time disturbance observers are developed for different channels of spacecraft based on barrier functions for achieving finite-time asymptotic estimates of unknown bounded uncertainties in the system. Second, a class of prescribed performance functions is considered in the design of the barrier function. The spacecraft attitude adaptive tracking control strategy with finite-time convergence capability and prescribed performance is proposed based on the designed finite-time disturbance observers and barrier function. Finally, the theoretical findings are verified by numerical simulations and compared with the simulation results of existing methods.  相似文献   

2.
In this paper, a new robust adaptive prescribed performance control (PPC, for short) scheme is proposed for quadrotor UAVs (QUAVs, for short) with unknown time-varying payloads and wind gust disturbances. Under the presented framework, the overall control system is decoupled into translational subsystem and rotational subsystem. These two subsystems are connected to each other through common attitude extraction algorithms. For translational subsystem, a novel robust adaptive PPC strategy is designed based on the sliding mode control technique to provide better trajectory tracking performance and well robustness. For rotational subsystem, a new robust adaptive controller is constructed based on backstepping technique to track the desired attitudes. Finally, the overall system is proved to be stable in the sense of uniform ultimate boundedness, and numerical simulation results are presented to validate the effectiveness of the proposed control scheme.  相似文献   

3.
In this work, aiming at the trajectory tracking control of the quadrotor UAV subject to external disturbances and model uncertainties, a finite-time approach with preassigned performance guaranteed is proposed. First, the control system is decoupled into translational and rotational subsystems. Then, in both two subsystems, the performance bounds constructed by the newly established appointed-time performance functions are devised for guaranteeing the tracking performance, and the controllers are designed via applying the dynamic surface control technique with integral barrier Lyapunov functions involved. Moreover, finite-time tracking differentiators and finite-time multivariable disturbance observers are exploited to estimate the target signals and the lumped disturbances, respectively. Finally, two examples of simulation are carried out to validate the effectiveness and superiority of the proposed control method.  相似文献   

4.
This paper studies the issue of finite-time performance guaranteed event-triggered (ET) adaptive neural tracking control for strict-feedback nonlinear systems with unknown control direction. A novel finite-time performance function is first constructed to describe the prescribed tracking performance, and then a new lemma is given to show the differentiability and boundedness of the performance function, which is important for the verification of the closed-loop system stability. Furthermore, with the help of the error transformation technique, the origin constrained tracking error is transformed into an equivalent unconstrained one. By utilizing the first-order sliding mode differentiator, the issue of “explosion of complexity” caused by the backstepping design is adequately addressed. Subsequently, an ingenious adaptive updated law is given to co-design the controller and the ET mechanism by the combination of the Nussbaum-type function, thus effectively handling the influences of the measurement error resulted from the ET mechanism and the challenge of the controller design caused by the unknown control direction. The presented event-triggered control scheme can not only guarantee the prescribed tracking performance, but also alleviate the communication burden simultaneously. Finally, numerical and practical examples are provided to demonstrate the validity of the proposed control strategy.  相似文献   

5.
This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.  相似文献   

6.
This paper addresses the tracking control problem of TCP/AWM network systems in presence of nonresponsive data flows of category user datagram protocol (UDP) flows. Firstly, a modified network system model is established by a certain suitable variable transformation, and then a fuzzy logic system (FLS) emulator is used to approximate the nonlinear terms in the network dynamics representation system. Secondly, inspired by the idea of the prescribed performance control (PPC), a novel finite-time performance function (NFTPF) is proposed. In turn, an adaptive finite-time congestion control strategy is designed by compatible usage as appropriate of a barrier Lyapunov function (BLF), the backstepping control synthesis, and an event-triggered mechanism. The proposed control strategy can not only make the tracking error to satisfy the pre-assigned transient and steady-state performance, but also ensure that all the closed-loop signals remain semi-globally uniformly ultimately bounded (SGUUB). In addition, the designed congestion control strategy eliminates potential occurrence of Zeno behavior. A set of simulation results are presented to clarify the feasibility and effectiveness of proposed methodological approach and the designed congestion controller.  相似文献   

7.
In this paper, the prescribed performance trajectory tracking problem of quadrotor aircraft with six degrees of freedom is addressed. Firstly, for the sake of facilitating the construction of controller, the aircraft is decomposed into position loop and attitude loop through time scale decomposition method. A fixed-time sliding mode controller is proposed to guarantee the convergence time of the aircraft system regardless of initial states. After that, to enhance security of control system, the hyperbolic tangent performance function is designed as performance index function to maintain the error within a prescribed range. Then, the event-triggered strategy is adopted to attitude subsystem which can significantly save communication resources, and the stability of control system is analyzed by Lyapunov method. In addition, the Zeno phenomenon is avoided which can be proved by ensuring the two consecutive trigger events have a positive lower limit. Finally, the validity of the constructed controller is confirmed by simulation results.  相似文献   

8.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

9.
The continuous finite-time nonsingular terminal sliding mode (NTSM) attitude tracking control for rigid spacecraft is investigated. Firstly, a finite-time attitude controller combined with a new adaptive update law is designed. Different from existing controllers, the proposed controller is inherently continuous and the chattering is effectively reduced. Then, an adaptive model-free finite-time state observer (AMFFTSO) and an angular velocity calculation algorithm (AVCA) are developed to estimate the unknown angular velocity. The unique feature of the proposed method is that the finite-time estimation of angular velocity is achieved and no prior knowledge of quaternion derivative upper bound is needed. Next, based on the estimated angular velocity, a finite-time attitude controller with only attitude measurement is developed. Finally, some simulations are presented and the effectiveness of the proposed control scheme is illustrated.  相似文献   

10.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

11.
This paper studies the finite-time localization and multicircular circumnavigation problem of an unknown stationary target via a networked multi-agent system using bearing-only measurements. To enhance the convergence rate of estimation, a novel estimator is developed to enable the agent to localize the target in finite time. At the same time, with the estimated target position, a distributed controller is designed such that the agents circumnavigate the target along different orbits with any prescribed angular spacing in finite time. In terms of Lyapunov theory and cascade control strategy, finite-time stability of the overall system including the estimator and controller are analyzed rigorously. Besides, the proposed algorithms guarantee that the agents can keep a safe distance from the target in the whole movement process, and high angular velocity can be avoided even if the circumnavigation radius becomes small. Finally, to corroborate the theoretical results, two simulation examples are given.  相似文献   

12.
This paper proposes a new adaptive region tacking control scheme with nonlinear error transformation for underwater vehicles based on barrier Lyapunov functions. In the new scheme, a redefinition of the tracking error is given by introducing nonlinear error transformation in prescribed performance control. Although the results created by the new scheme indicate a slight decrease in the tracking precision, the real tracking error will be still kept within the prescribed performance functions, while the control signals also become smoother, compared with the original prescribed performance control scheme. Then an approximation form of the control input with constraints, together with an improved Nussbaum function, is designed to derive the control law for underwater vehicles with thruster saturation and dead zone. Furthermore, a new velocity error variable is given by introducing an auxiliary variable to compensate the effect from thruster saturation. Finally, it is proved that the nonlinear system is semi-global practical finite-time stable and the tracking error is always kept within the prescribed boundaries. The effectiveness of the proposed region tracking control scheme is validated through simulation-based case studies on an underwater vehicle with measurement noise.  相似文献   

13.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

14.
In this paper, a leader-follower formation control scheme of multiple underactuated surface vessels (USVs) is proposed for trajectory tracking, which not only solves the line of sight (LOS) and angle tracking errors within the prescribed performance, but also avoids collisions and maintains the communication connection distance. To achieve the prescribed performance and converge the tracking errors in finite time, a tan-type barrier Lyapunov function (TBLF) is introduced into the designed control strategy. In the process of formation control design, the measured values of the LOS range and angle are available, and the velocity of the leader is estimated using a high-gain observer. Next, a novel self-structuring neural network (SNN) is proposed to estimate the uncertain dynamics induced by the model uncertainties and environmental disturbances, and the computation amount is reduced by optimizing the number of neurons. Combining coordinate transformation and dynamic surface control (DSC), an adaptive NN controller with prescribed performance is proposed. The Lyapunov analysis shows that, although uncertain dynamics exist, the tracking errors can converge to a small region in finite time while achieving the prescribed performance, avoiding collisions, and maintaining the communication distance. In the closed-loop system, all signals are practical finite-time stable (PFS). Finally, the effectiveness of the proposed scheme is illustrated through a numerical simulation.  相似文献   

15.
A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.  相似文献   

16.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

17.
This research addresses the problem of finite-time tracking error constrained control for a class of non-strict stochastic nonlinear systems with unknown time-varying powers and multiple power terms. Based on the conversion from constrained tracking error to an unconstrained signal with the same effect, by adopting the backstepping technique together with adaptive neural network control, a controller with upper and lower time-varying power bounds is designed to meet the prescribed performance control scheme in finite-time. Finally, two simulation examples are shown to verify the effectiveness of the commendatory control method.  相似文献   

18.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

19.
A new solution of networked control systems with bandwidth constraints is proposed in this paper. First, at the smart sensor side, a new stochastic communication logic scheduling strategy is designed based on a Poisson Process with time-dependent intensity. Under this strategy, the system only needs a finite-time state update. Hence the quantity of transmission of message is reduced. With the proof that the stochastic communication logic is essentially a Markov chain, the NCS is modeled as a jump system and the necessary and sufficient condition of stability for the state feedback system is presented as well. With the proposed stochastic communication logic, based on the update time, the controller is given in terms of a LMI. The simulation result shows that the scheduling strategy can decrease the network traffic, while the controller can guarantee certain good system performance.  相似文献   

20.
This paper investigates the problem of asymptotic tracking control of nonlinear robotic systems with prescribed performance. The control strategy is developed based on a modified prescribed performance function (PPF) to guarantee the transient behavior, while the requirements on the accurate initial tracking error in the classical PPF can be remedied. The fuzzy logic system (FLS) is used to approximate the unknown dynamics. In the existing PPF based adaptive control schemes with FLSs, the tracking error does not achieve asymptotic convergence. To address this issue, a robust integral of the sign of the error (RISE) term is incorporated into the control design to reject the FLS approximation errors and external disturbances, such that the asymptotic convergence is achieved. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号