首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

2.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

3.
In this paper, an adaptive fuzzy decentralized control method is proposed for accommodating actuator faults for a class of uncertain nonlinear large-scale systems. The considered faults are modeled as both loss of effectiveness and lock-in-place. With the help of fuzzy logic systems to approximate the unknown nonlinear functions, the novel adaptive fuzzy faults-tolerant decentralized controllers are constructed by combining the backstepping technique and the dynamic surface control (DSC) approach. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop systems are bounded and the tracking errors converge to a small neighborhood of zero. Simulation results are provided to show the effectiveness of the control approach.  相似文献   

4.
This paper investigates the problem of asymptotic tracking control of nonlinear robotic systems with prescribed performance. The control strategy is developed based on a modified prescribed performance function (PPF) to guarantee the transient behavior, while the requirements on the accurate initial tracking error in the classical PPF can be remedied. The fuzzy logic system (FLS) is used to approximate the unknown dynamics. In the existing PPF based adaptive control schemes with FLSs, the tracking error does not achieve asymptotic convergence. To address this issue, a robust integral of the sign of the error (RISE) term is incorporated into the control design to reject the FLS approximation errors and external disturbances, such that the asymptotic convergence is achieved. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control scheme.  相似文献   

5.
This paper investigates the adaptive fuzzy control design problem of multi-input and multi-output (MIMO) non-strict feedback nonlinear systems. The considered control systems contain unknown control directions and dead zones. Fuzzy logic systems (FLSs) are utilized to approximate the unknown nonlinear functions, and the state observers are designed to estimate immeasurable states. By constructing a dead zone compensator and introducing a Nussbaum gain function into the backstepping technique, an adaptive fuzzy output feedback control method is developed. The proposed adaptive fuzzy controller is proved to guarantee the semi-globally uniformly ultimately bounded (SGUUB) of the closed-loop system, and can solve the control design problems of unmeasured states, unknown control directions and dead zones. The simulation results are given to demonstrate the effectiveness of the proposed control method.  相似文献   

6.
When the Preisach operator, a commonly used hysteresis model, is coupled with uncertain unparametrizable nonlinear dynamics of systems, its tracking control problem in particular with the demands for prescribed tracking accuracy and finite convergence time is challenging, and has not yet been solved in the existing literature. In this study, we focus on the problem, and develop a fixed-time adaptive fuzzy control scheme as a solution to it, based upon a novel decomposition of the Preisach model, the design of a robust control framework, and the integration of a direct adaptive fuzzy control approach. With our scheme, it can be rigorously proved that the tracking error goes to a predefined interval around zero in a bounded convergence time, and all signals in the closed-loop system are bounded. Besides theoretical analysis, the obtained results are also confirmed by experimental tests based on a real-life piezoactuated positioner.  相似文献   

7.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

8.
针对一类不确定非线性时滞系统,提出了一种具有确定逼近域的自适应模糊控制器的设计方案。在动态面控制(DSC)的基础上,通过时滞代换技巧,使得自适应模糊逼近器的输入为参考信号,从而可以明确定义逼近域,同时可以处理系统中完全未知的时滞信号。基于Lyapunov-Krasovskii范函,证明闭环系统所有信号为半全局一致有界的,并且跟踪误差可以收敛到原点附件的一个小邻域内。仿真结果进一步说明了该方法的有效性。  相似文献   

9.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

11.
This study carries out the problem of adaptive backstepping fuzzy tracking control for a class of full state constrained uncertain nonlinear system with unknown control directions. Based on Nussbaum-type functions and tan-type Barrier Lyapunov functions, a novel adaptive fuzzy tracking controller is proposed to guarantee that the system output tracking error asymptotically converges to zero, while the constraints on the states of system will not be violated during operation. Compared with the existing results, a better convergence effect is obtained for this class of systems. Stability analysis of the proposed closed-loop control system is supported by the Lyapunov stability theory. Finally, a simulation example is presented to illustrate the effectiveness of the proposed control strategy.  相似文献   

12.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

13.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

14.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

15.
In this paper, a novel approach for the design of an indirect adaptive fuzzy output tracking excitation control of power system generators is proposed. The method is developed based on the concept of differentially flat systems through which the nonlinear system can be written in canonical form. The flatness-based adaptive fuzzy control methodology is used to design the excitation control signal of a single machine power system in order to track a reference trajectory for the generator angle. The considered power system can be written in the canonical form and the resulting excitation control signal is shown to be nonlinear. In case of unknown power system parameters due to abnormalities, the nonlinear functions appearing in the control signal are approximated using adaptive fuzzy systems. Simulation results show that the proposed controller can enhance the transient stability of the power system under a three-phase to ground fault occurring near the generator terminals.  相似文献   

16.
《Journal of The Franklin Institute》2019,356(18):11345-11363
In this paper, the problem of adaptive neural network control design is addressed for a kind of discrete-time nonlinear interconnected systems with unknown dead-zone. The control purpose of this paper is to design an adaptive neural network controller to ensure the systems stability and achieve the desired control performance. The neural networks are utilized to approximate the unknown functions. On the basis of utility functions, the critic signals are considered in the designed control signals. In order to offset the impact of unknown asymmetric dead-zone in the controlled system, the adaptive assistant signal is constructed. Based on the gradient descent rule, the weight tuning laws are obtained. The difference Lyapunov function theory is adopted to prove the studied system stability. The viability of the devised control strategy is further testified via some simulation results.  相似文献   

17.
In this research, a hybrid adaptive bionic fuzzy control strategy is developed for a class of complicated nonlinear multiple-input-multiple-output (MIMO) systems with dead-zone input. The first component of the bionic adaptive controller is a general phrase for tunning system parameters depending on the present state, and the second component is a trend-based compensation for adjusting the system parameters. This technique makes the system more intelligent and boosts its anti-interference capabilities. The stability and convergence are analyzed using the Lyapunov synthetic method, and thus the parameter restrictions of the MIMO system are provided. Finally, the strong anti-interference of the system is verified by the simulations.  相似文献   

18.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

19.
This paper addresses the adaptive fuzzy event-triggered control (ETC) problem for a class of nonlinear uncertain systems with unknown nonlinear functions. A novel ETC approach that exhibits a combinational triggering (CT) behavior is proposed to update the controller and fuzzy weight vectors, achieving the non-periodic control input signals for nonlinear systems. A CT-based fuzzy adaptive observer is firstly constructed to estimate the unmeasurable states. Based on this, an output feedback ETC is proposed following the backstepping and error transformation methods, which ensures the prescribed dynamic tracking (PDT) performance. The PDT performance indicates that the transient bounds, over-shooting and ultimate values of tracking errors are fully determined by the control parameters and functions chosen by users. The closed-loop stability is guaranteed under the framework of impulsive dynamic system. Besides, the Zeno phenomenon is circumvented. The theoretical analysis indicates that the proposed scheme guarantees control performance while considerably reducing the communication resource utilization and controller updating frequency. Finally, the numerical simulations are conducted to verify the theoretical findings.  相似文献   

20.
This paper addresses a novel fuzzy adaptive control method for a class of uncertain nonlinear multi-input multi-output (MIMO) systems with unknown dead-zone outputs and immeasurable states. The immeasurable states under consideration are estimated by designing a fuzzy state observer. Based on the properties of the Nussbaum-type function, the difficulty of fuzzy adaptive control caused by the unknown dead zone outputs of MIMO nonlinear uncertain systems is overcome. The presented design algorithm not only guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, but also ensures that the outputs of the MIMO system converge to a small neighborhood of the desired outputs. The main contributions of this research lie in that the developed MIMO systems are more general, and an efficient design method of output-feedback controller is investigated for the studied MIMO systems, which is more applicable in practical environment. Simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号