首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We describe a technology based on lamination that allows for the production of highly integrated 3D devices suitable for performing a wide variety of microfluidic assays. This approach uses a suite of microfluidic coupons (“microfloupons”) that are intended to be stacked as needed to produce an assay of interest. Microfloupons may be manufactured in paper, plastic, gels, or other materials, in advance, by different manufacturers, then assembled by the assay designer as needed. To demonstrate this approach, we designed, assembled, and characterized a microfloupon device that performs sodium-dodecyl-sulfate polyacrylamide gel electrophoresis on a small sample of protein. This device allowed for the manipulation and transport of small amounts of protein sample, tight injection into a thin polyacrylamide gel, electrophoretic separation of the proteins into bands, and subsequent removal of the gel from the device for imaging and further analysis. The microfloupons are rugged enough to handle and can be easily aligned and laminated, allowing for a variety of different assays to be designed and configured by selecting appropriate microfloupons. This approach provides a convenient way to perform assays that have multiple steps, relieving the need to design highly sophisticated devices that incorporate all functions in a single unit, while still achieving the benefits of small sample size, automation, and high speed operation.  相似文献   

2.
Polydimethylsiloxane (DMS) is a popular material for microfluidics, but it is hydrophobic and is prone to non-specific protein adsorption. In this study, we explore methods for producing stable, protein resistant, tetraglyme plasma polymer coatings on PDMS by combining extended baking processes with multiple plasma polymer coating steps. We demonstrate that by using this approach, it is possible to produce a plasma polymer coatings that resist protein adsorption (<10 ng/cm2) and are stable to storage over at least 100 days. This methodology can translate to any plasma polymer system, enabling the introduction of a wide range of surface functionalities on PDMS surfaces.  相似文献   

3.
Immunoassay is one of the important applications of microfluidic chips and many methodologies were reported for decreasing sample∕reagent volume, shortening assay time, and so on. Micro-enzyme-linked immunosorbent assay (micro-ELISA) is our method that utilizes packed microbeads in the microfluidic channel and the immunoreactions are induced on the beads surface. Due to the large surface-to-volume ratio and small analytical volume, excellent performances have been verified in assay time and sample∕reagent volume. In order to realize the micro-ELISA, one of the important processes is the immobilization of antibody on the beads surface. Previously, the immobilization process was performed in a macroscale tube by physisorption of antibody, and long time (2 h) and large amount of antibody (or high concentration) were required for the immobilization. In addition, the processes including the reaction and washing were laborious, and changing the analyte was not easy. In this research, we integrated the immobilization process into a microfluidic chip by applying the avidin-biotin surface chemistry. The integration enabled very fast (1 min) immobilization with very small amount of precious antibody consumption (100 ng) for one assay. Because the laborious immobilization process can be automatically performed on the microfluidic chip, ELISA method became very easy. On-demand immunoassay was also possible just by changing the antibodies without using large amount of precious antibodies. Finally, the analytical performance was investigated by measuring C-reactive protein and good performance (limit of detection <20 ng∕ml) was verified.  相似文献   

4.
Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the “least flow resistance path” principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a “deterministic” manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm2 scale area, as a promising tool to pattern large-scale single cells on specific substrates and facilitate on-chip cellular assay at the single cell level.  相似文献   

5.
Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede “real world” performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output.  相似文献   

6.
The geometry of crossing structure formed by two-layer microchannels determines the axial and transverse movements of contact interface between two liquid streams, which gives us a new method for promoting the micromixers. Hence, we designed four different three-dimensional micromixers by selecting two different crossing structures as basic units (one unit is a crossing structure called “X” and the other is a reversed crossing structure called “rX”). In order to find out how the crossing-structure sequence affects the mixing performance within three-dimensional micromixers, we organized these four mixers in different ways, i.e., the first combination is X-rX-X-rX-…, the second is X-rX-rX-X-…, the third is X-X-rX-X-…, and the last one is X-X-X-X…. Consequently, quite distinct mixing phenomena are engendered. Furthermore, experiments were also conducted using the first and the last models to verify the simulation results. We infer that the last mixer is more likely to trigger chaos and convection by rotating the contact surface than the first one that merely swings the surface even when the flow rates and viscosities of the two liquid streams are increased.  相似文献   

7.
Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ), type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.  相似文献   

8.
IntroductionFecal calprotectin is a biomarker for monitoring inflammatory bowel disease (IBD) activity. Our aim, therefore, was to evaluate two new assays, the point of care test Quantum Blue and the Liaison Calprotectin with respect to the Calprest, commonly used assay, and to determine their performance for IBD diagnosis.Materials and methodsWe included 73 prospective patients with IBD. Fecal calprotectin was measured and analysed with the routine Calprest assay and two recently introduced assays, the Quantum Blue and the Liaison Calprotectin. Furthermore, we compared the results by Bland and Altman analysis, and Passing-Bablok regression.ResultsWe observed no difference in median calprotectin values obtained by the Calprest (94.6 µg/g, 95%CI 66.5 to 166.1) and Liaison assay (101.0 µg/g, 95%CI 48.1 to 180.1) whereas significantly higher concentrations were obtained with the Quantum Blue assay (240.0 µg/g, 95%CI 119.9 to 353.2). The mean absolute and relative difference between the Calprest and Quantum Blue methods was statistically significant (- 162.3 µg/g and
- 143.1%). Mean absolute difference between the Calprest and Liaison calprotectin methods was positive (2.2 µg/g). The agreement between assays revealed that Quantum Blue and Calprest have fair agreement with Kappa coefficient of 0.38 (95%CI 0.26 to 0.51). Liaison Calprotectin and Calprest revealed moderate agreement with a weak Kappa coefficient of 0.47 (95%CI 0.32 to 0.62).ConclusionClinicians should be aware of these differences between the assays and avoid comparison of their respective results.  相似文献   

9.
Droplet interface bilayer (DIB) networks are emerging as a cornerstone technology for the bottom up construction of cell-like and tissue-like structures and bio-devices. They are an exciting and versatile model-membrane platform, seeing increasing use in the disciplines of synthetic biology, chemical biology, and membrane biophysics. DIBs are formed when lipid-coated water-in-oil droplets are brought together—oil is excluded from the interface, resulting in a bilayer. Perhaps the greatest feature of the DIB platform is the ability to generate bilayer networks by connecting multiple droplets together, which can in turn be used in applications ranging from tissue mimics, multicellular models, and bio-devices. For such applications, the construction and release of DIB networks of defined size and composition on-demand is crucial. We have developed a droplet-based microfluidic method for the generation of different sized DIB networks (300–1500 pl droplets) on-chip. We do this by employing a droplet-on-rails strategy where droplets are guided down designated paths of a chip with the aid of microfabricated grooves or “rails,” and droplets of set sizes are selectively directed to specific rails using auxiliary flows. In this way we can uniquely produce parallel bilayer networks of defined sizes. By trapping several droplets in a rail, extended DIB networks containing up to 20 sequential bilayers could be constructed. The trapped DIB arrays can be composed of different lipid types and can be released on-demand and regenerated within seconds. We show that chemical signals can be propagated across the bio-network by transplanting enzymatic reaction cascades for inter-droplet communication.  相似文献   

10.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

11.
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical.  相似文献   

12.
Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMS surface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmotic mobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy (AFM) analysis of the surface reveals a “peak and ridge” structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMS surface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMS surface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surface electric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings.  相似文献   

13.
The emerging concept of thread-based microfluidics has shown great promise for application to inexpensive disease detection and environmental monitoring. To allow the creation of more sophisticated and functional thread-based sensor designs, the ability to better control and understand the flow of fluids in the devices is required. To meet this end, various mechanisms for controlling the flow of reagents and samples in thread-based microfluidic devices are investigated in this study. A study of fluid penetration in single threads and in twined threads provides greater practical understanding of fluid velocity and ultimate penetration for the design of devices. “Switches” which control when or where flow can occur, or allow the mixing of multiple fluids, have been successfully prototyped from multifilament threads, plastic films, and household adhesive. This advancement allows the fabrication of more functional sensory devices which can incorporate more complex detection chemistries, while maintaining low production cost and simplicity of construction.  相似文献   

14.
The discovery of protein biomarkers that reflect the biological state of the body is of vital importance to disease management. Urine is an ideal source of biomarkers that provides a non-invasive approach to diagnosis, prognosis and prediction of diseases. Consequently, the study of the human urinary proteome has increased dramatically over the last 10 years, with many studies being published. This review focuses on urinary protein biomarkers that have shown potential, in initial studies, for diseases affecting the urogenital tract, specifically chronic kidney disease and prostate cancer, as well as other non-urogenital pathologies such as breast cancer, diabetes, atherosclerosis and osteoarthritis. PubMed was searched for peer-reviewed literature on the subject, published in the last 10 years. The keywords used were “urine, biomarker, protein, and/or prostate cancer/breast cancer/chronic kidney disease/diabetes/atherosclerosis/osteoarthritis”. Original studies on the subject, as well as a small number of reviews, were analysed including the strengths and weaknesses, and we summarized the performance of biomarkers that demonstrated potential. One of the biggest challenges found is that biomarkers are often shared by several pathologies so are not specific to one disease. Therefore, the trend is shifting towards implementing a panel of biomarkers, which may increase specificity. Although there have been many advances in urinary proteomics, these have not resulted in similar advancements in clinical practice due to high costs and the lack of large data sets. In order to translate these potential biomarkers to clinical practice, vigorous validation is needed, with input from industry or large collaborative studies.Key words: urine, protein, biomarker  相似文献   

15.
Microfluidic-based protein arrays are promising tools for life sciences, with increased sensitivity and specificity. One of the drawbacks of this technology is the need to create fresh surface chemistry for protein immobilization at the beginning of each experiment. In this work, we attempted to include the process of surface functionalization as part of the fabrication of the device, which would substitute the time consuming step of surface functionalization at the beginning of each protein array experiment. To this end, we employed a novel surface modification using self-assembled monolayers (SAMs) to immobilize biomolecules within the channels of a polydimethylsiloxane (PDMS) integrated microfluidic device. As a model, we present a general method for depositing siloxane-anchored SAMs, with 1-undecyl-thioacetate-trichlorosilane (C11TA) on the silica surfaces. The process involved developing PDMS-compatible conditions for both SAM deposition and functional group activation. We successfully demonstrated the ability to produce, within an integrated microfluidic channel, a C11TA monolayer with a covalently conjugated antibody. The antibody could then bind its antigen with a high signal to background ratio. We further demonstrated that the antibody was still active after storage of the device for a week. Integration of the surface chemistry into the device as part of its fabrication process has potential to significantly simplify and shorten many experimental procedures involving microfluidic–based protein arrays. In turn, this will allow for broader dissemination of this important technology.  相似文献   

16.
In this paper, we present a low cost and equipment-free blood filtration device capable of producing plasma from blood samples with mL-scale capacity and demonstrate its clinical application for hepatitis B diagnosis. We report the results of in-field testing of the device with 0.8–1 ml of undiluted, anticoagulated human whole blood samples from patients at the National Hospital for Tropical Diseases in Hanoi, Vietnam. Blood cell counts demonstrate that the device is capable of filtering out 99.9% of red and 96.9% of white blood cells, and the plasma collected from the device contains lower red blood cell counts than plasma obtained from a centrifuge. Biochemistry and immunology testing establish the suitability of the device as a sample preparation unit for testing alanine transaminase (ALT), aspartate transaminase (AST), urea, hepatitis B “e” antigen (HBeAg), hepatitis B “e” antibody (HBe Ab), and hepatitis B surface antibody (HBs Ab). The device provides a simple and practical front-end sample processing method for point-of-care microfluidic diagnostics, enabling sufficient volumes for multiplexed downstream tests.  相似文献   

17.
Intestinal enteroids are ex vivo primary cultured single-layer epithelial cell spheroids of average diameter ∼150 μm with luminal surface facing inward. Measurement of enteroid swelling in response to secretagogues has been applied to genetic testing in cystic fibrosis and evaluation of drug candidates for cystic fibrosis and secretory diarrheas. The current measurement method involves manual addition of drugs and solutions to enteroids embedded in a Matrigel matrix and estimation of volume changes from confocal images of fluorescently stained enteroids. We developed a microfluidics platform for efficient trapping and immobilization of enteroids for quantitative measurement of volume changes. Multiple enteroids are trapped in a “pinball machine-like” array of polydimethylsiloxane posts for measurement of volume changes in unlabeled enteroids by imaging of an extracellular, high-molecular weight fluorescent dye. Measurement accuracy was validated using slowly expanding air bubbles. The method was applied to measure swelling of mouse jejunal enteroids in response to an osmotic challenge and cholera toxin-induced chloride secretion. The microfluidics platform allows for parallel measurement of volume changes on multiple enteroids during continuous superfusion, without an immobilizing matrix, and for quantitative volume determination without chemical labeling or assumptions about enteroid shape changes during swelling.  相似文献   

18.
In the August 2020 issue of Clinical Chemistry and Laboratory Medicine, Giuseppe Lippi and Mario Plebani proposed a definition of laboratory medicine, which ends with this sentence: “The results of these measurements are translated into actionable information for improving the care and/or maintaining the wellness of both a single individual and an entire population”. Nevertheless, the selfishness of individuals may, sometimes, jeopardize the interest of whole populations. The virtue of justice being within the reach of the entire human community more than of single individuals, the final sentence in the definition proposed by Giuseppe Lippi and Mario Plebani, should therefore, in our view, be rewritten, less selfishly, for example like this: “For a given investment, these measurements are preferably made when they bring as much beneficence, and non-maleficence, as possible to the whole population”.  相似文献   

19.
20.
Inflammatory bowel disease (IBD) is a heterogeneous group of chronic inflammatory disorders of the gastrointestinal tract with two main distinguishable entities, Crohn’s disease (CD) and ulcerative colitis (UC). IBD-unclassified (IBD-U) is a diagnosis that covers the “grey” zone of diagnostic uncertainty between UC and CD. Current diagnosis of IBD relies on the clinical, endoscopic, radiological, histological and biochemical features, but this approach has shortcomings especially in cases of overlapping symptoms of CD and UC. The need for a diagnostic tool that would improve the conventional methods in IBD diagnosis directed the search towards potential immunological markers, since an aberrant immune response against microbial or endogenous antigens in a genetically susceptible host seems to be implicated in IBD pathogenesis. The spectrum of antibodies to different microbial antigens and autoantibodies associated with IBD is rapidly expanding. Most of these antibodies are associated with CD like anti-glycan antibodies: anti-Saccharomices cerevisiae (ASCA) and the recently described anti-laminaribioside (ALCA), anti-chitobioside (ACCA), anti-mannobioside (AMCA), anti-laminarin (anti-L) and anti-chitin (anti-C) antibodies; in addition to other antibodies that target microbial antigens: anti-outer membrane porin C (anti-OmpC), anti-Cbir1 flagellin and anti-I2 antibody. Also, autoantibodies targeting the exocrine pancreas (PAB) were shown to be highly specific for CD. In contrast, UC has been associated with anti-neutrophil cytoplasmic autoantibodies (pANCA) and antibodies against goblet cells (GAB). Current evidence suggests that serologic panels of multiple antibodies are useful in differential diagnosis of CD versus UC and can be a valuable aid in stratifying patients according to disease phenotype and risk of complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号