首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

2.
In this paper, an interventional bipartite consensus problem is considered for a high-order multi-agent system with unknown disturbance dynamics. The interactions among the agents are cooperative and competitive simultaneously and thus the interaction network (just called coopetition network in sequel for simplicity) is conveniently modeled by a signed graph. When the coopetition network is structurally balanced, all the agents are split into two competitive subgroups. An exogenous system (called leader for simplicity) is introduced to intervene the two competitive subgroups such that they can reach a bipartite consensus. The unknown disturbance dynamics are assumed to have linear parametric models. With the help of the notation of a disagreement state variable, decentralized adaptive laws are proposed to estimate the unknown disturbances and a dynamic output-feedback consensus control is designed for each agent in a fully distributed fashion, respectively. The controller design guarantees that the state matrix of the closed-loop system can be an arbitrary predefined Hurwitz matrix. Under the assumption that the coopetition network is structurally balanced and the leader is a root of the spanning tree in an augmented graph, the bipartite consensus and the parameter estimation are analyzed by invoking a common Lyapunov function method when the coopetition network is time-varying according to a piecewise constant switching signal. Finally, simulation results are given to demonstrate the effectiveness of the proposed control strategy.  相似文献   

3.
This study investigates the consensus tracking problem for unknown multi-agent systems (MASs) with time-varying communication topology by using the methods of data-driven control and model predictive control. Under the proposed distributed iterative protocol, sufficient conditions for reducing tracking error are analyzed for both time invariable and time varying desired trajectories. The main feature of the proposed protocol is that the dynamics of the multi-agent systems are not required to be known and only local input-output data are utilized for each agent. Numerical simulations are presented to illustrate the effectiveness of the derived consensus conditions.  相似文献   

4.
The goal of this paper is to propose an optimal fault tolerant control (FTC) approach for multi-agent systems (MASs). It is assumed that the agents have identical affine dynamics. The underlying communication topology is assumed to be a directed graph. The concepts of both inverse optimality and partial stability are further employed for designing the control law fully developed in the paper. Firstly, the optimal FTC problem for linear MASs is formulated and then it is extended to MASs with affine nonlinear dynamics. To solve the Hamilton-Jacobi-Bellman (HJB) equation, an Off-policy Reinforcement Learning is used to learn the optimal control law for each agent. Finally, a couple of numerical examples are provided to demonstrate the effectiveness of the proposed scheme.  相似文献   

5.
This paper studies the consensus problem of multiple agents with discrete-time second-order dynamics. It is assumed that the information obtained by each agent is with time-varying delays and the interaction topology is time-varying, where the associated direct graphs may not have spanning trees. Under the condition that the union graph is strongly connected and balanced, it is shown that there exist controller gains such that consensus can be reached for any bounded time-delays. Moreover, a method is provided to design controller gains. Simulations are performed to validate the theoretical results.  相似文献   

6.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

7.
The consensus tacking problem for multi-agent systems with a leader of none control input and unknown control input is studied in this paper. By virtue of the relative state information of neighboring agents, state estimator and disturbance estimator are designed for each follower to estimate the system states and exogenous disturbance, respectively. Meanwhile, a novel control protocol based on two estimators is designed to make tracking error eventually converge to zero. Furthermore, the obtained results are further extended to the leader with unknown control input. A novel state estimator with adaptive time-varying gain is proposed such that consensus tracking condition is independent of the Laplacian matrix with regard to the communication topology. Finally, two examples are presented to verify the feasibility of the proposed control protocol.  相似文献   

8.
This paper investigates the prescribed-time containment control problem for multi-agent systems with high-order nonlinear dynamics under a directed communication topology. Firstly, in view of the fact that only some follower agents can directly access the state information of multiple leader agents, a prescribed-time distributed observer is put forward to estimate the convex hull spanned by these leaders. Then, with the help of the distributed observer, a novel containment control method is developed for each follower based on a time-varying scaling function, so that all followers can converge to the convex hull spanned by the states of multiple leaders within a prescribed time. The comparison with the finite-time and fixed-time control methods differs in that the convergence time of the method proposed in this paper is independent of the initial conditions and control parameters and can be arbitrarily preassigned according to actual needs. Finally, an example is given to demonstrate the usefulness of the prescribed-time containment control method.  相似文献   

9.
In this paper, an adaptive attitude coordination control problem for spacecraft formation flying is investigated under a general directed communication topology containing a directed spanning tree with a leader as the root. In the presence of unknown time-varying inertia, persistent external disturbances and control input saturation, a novel robust adaptive coordinated attitude control algorithm with no prior knowledge of inertia for spacecraft is proposed to coordinately track the common time-varying reference states. Aiming at optimizing the control algorithm, a dynamic adjustment function is introduced to adjust the control gain according to the tracking errors. The effectiveness of the proposed control scheme is illustrated through numerical simulation results.  相似文献   

10.
11.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

12.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

13.
This paper intends to investigate the consensus problem of a nonlinear multi-agent system with new nonlinear terms added to the dynamics of each agent in the leader-following framework with impulsive control. The main contribution of this paper is introducing these new terms expressing the effect of each agent on neighbor agents. The new terms called effect terms (ETs) are considered with time-varying delay. Moreover, the communication interactions among all agents are addressed by a set of consensusable and unconsensusable switching topologies. In particular, the topology-dependent average dwell time (TDADT), one of the significant practical analysis methods for switched systems, has been calculated for each topology. The globally uniformly exponentially stability (GUES) for the consensus error dynamics is analyzed by employing algebraic graph theory and a multiple discontinuous Lyapunov function approach (MDLF) regarding separate Lyapunov functions for impulse instants. Furthermore, sufficient conditions in terms of linear matrix inequalities (LMIs) are derived to ensure that consensus can be achieved. Finally, the effectiveness of the theoretical analysis is corroborated by a numerical example.  相似文献   

14.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

15.
This paper investigates the cooperative surrounding control problem for networked multi-agent systems with nonlinear Lagrangian dynamics. With the consideration of the target with constant and time-varying velocity, two cooperative surrounding control algorithms with collision avoidance are proposed, in which possible collision among agents is prevented so as to achieve a more reliable and safer performance. For the case when the target has a constant velocity, a velocity observer is designed firstly for each agent. Secondly, to handle the nonlinear dynamics and avoid collisions, the neural networks and potential functions are used for the controller design. Then, the cooperative surrounding control algorithm is proposed such that all the agents surround the target with the desired relative positions. For the case when the target has a time-varying velocity, the velocity observer is designed under the assumption that the target’s partial acceleration is known for each agent. Then, the cooperative surrounding control algorithm is proposed such that the surrounding error between the target and each agent is bounded. The main difference between these two algorithms is that the former can ensure the collision avoidance among target and agents, while the latter can do so only among agents because the target’s velocity is time-varying. The Lyapunov theory is used to prove the stability of the cooperative surrounding control algorithms. The simulation illustrates the effectiveness of the theoretical results.  相似文献   

16.
As for the multi-agent systems (MASs) with time-varying switching subject to deception attacks, the leader-following consensus problem is studied in this article. The one-sided Lipschitz (OSL) condition is utilized for the nonlinear functions, which makes the results more general and relaxed than those obtained by Lipschitz condition. The nonidentical double event-triggering mechanisms (ETMs) are adopted for only a fraction of agents, and each agent transmits the data according to its own necessity. Semi-Markov process modeling with time-varying switching probability is adopted for switching topology and deception attacks occurring in transmission channel are considered. By using the cumulative distribution function (CDF) and the linear matrix inequality (LMI) technology, sufficient conditions for MASs to achieve consensus in mean square are obtained. An effective algorithm is presented to obtain the event-based control gains. The merits of the proposed control scheme are demonstrated via a simulation example.  相似文献   

17.
This paper presents a connectivity-preserving approximation-free design strategy for the distributed synchronized tracking of uncertain nonlinear multi-agent systems with limited communication ranges. All nonaffine nonlinearities in pure-feedback form are assumed to be unknown. The main contribution of this paper is to achieve approximation-free synchronized tracking while preserving the initial interaction patterns among agents. To this end, each synchronization error term is individually transformed to a nonlinear error function with a predefined time-varying function. The local tracking laws using only the relative output information among agents are designed via these nonlinear error terms. The connectivity preservation and preassigned tracking performance of the proposed synchronized tracking system are recursively analyzed in the Lyapunov sense, without employing any function approximators and potential functions. Finally, the effectiveness and robustness of the proposed strategy are demonstrated through simulation examples.  相似文献   

18.
This paper investigates the adaptive resilient containment control for nonlinear multiagent systems (MASs) with time-varying delay, unmodeled dynamics and sensor faults. To solve the coupling problem of unknown state delays and sensor faults in a nonlower triangular structure, we develop an effective method by using a new lemma and the Lyapunov-Krasovskii functional. Then, to reduce the negative impact of unknown sensor faults, a novel adaptive resilient containment control method is designed based on a distributed sliding-mode estimator, which can effectively improve the transient performance of the MASs. Moreover, by using a dynamic signal, the problem of unmodeled dynamics is solved. The proposed control scheme can not only drive all followers suffering from sensor faults to converge to the convex hull formed by the leaders but also relatively reduce the undesired chattering phenomenon. Finally, a comparative simulation example is given to illustrate the effectiveness of the proposed strategy.  相似文献   

19.
Most existing consensus control in multi-agent systems (MASs) require agents to update their state synchronously, which means that some agents need to wait for all individuals to complete the iteration before starting the next iteration. To overcome this bottleneck, this paper studied asynchronous consensus problems of second-order MASs (SOMASs) with aperiodic communication. An asynchronous pulse-modulated intermittent control (APIMC) with heterogeneous pulse-modulated function and time-varying control period, which can unify impulsive control and sampled-data control, is proposed for the consensus of SOMASs. A time-varying discrete system is constructed to describe the evolution of the sample values of position and velocity of the SOMAS. Then, by the analysis tools from the stochastic matrix and the properties of the Laplace matrix of graph, some effective conditions are obtained to show the relationship between the convergence of the controlled SOMASs and the control parameters. Finally, a 300-node SOMAS whose topology is a random geographic network is included to verify the feasibility of the proposed control and the correctness of the theoretical analysis.  相似文献   

20.
The problem of adaptive stabilization of a class of continuous-time and time-varying nonlinear plants is treated in this paper. The control scheme guarantees that the state of the plant, with bounded time-varying parameters, asymptotically converges to zero. For the nonlinear case with n2+n unknown parameters (n time-varying and n2 constant), when the control matrix B is unknown the controller has to adjust n2+1 parameters providing only local stability results. On the contrary, when the control matrix B is known only one parameter has to be adjusted and the proposed scheme provides global stability results. The general methodology is particularized for the linear case with 2n2 unknown parameters (n2 time-varying and n2 constant), adjusting n2+1 parameters when the control matrix B is unknown and guarantees only local stability results, whereas in the case when the control matrix B is known only one parameter has to be adjusted and the proposed scheme provides global stability results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号