首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
This paper is concerned with the simultaneous exponential stabilization problem for a set of stochastic port-controlled Hamiltonian (PCH) systems. Due to the limited bandwidth of the channels, the phenomena of fading channels and transmission delays which are described by a time-varying stochastic model always occur in the communication channels from the controller to the actuator. Meanwhile, actuator saturation constraint is taken into account. On the basis of dissipative Hamiltonian structural and saturating actuator properties, those stochastic PCH systems are combined to generate an augmented system. By utilizing the stochastic analysis theory, sufficient criterions are given for the simultaneous stabilization controller design ensuring that the closed-loop system is simultaneously exponentially mean-square stable (SEMSS). For the case that there exist external disturbances in the systems, some results on stability analysis and controller design are given. The developed controller design scheme is proved by a three-helicopter model simulation example.  相似文献   

2.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

3.
A novel control scheme combining disturbance observer technique and back-stepping method is proposed for a class of nonlinear system with multiple mismatched disturbances. The uncertain multiple mismatched disturbances contain not only single harmonic or constant disturbances but also another unexpected nonlinear signal presented as a nonlinear function. The composite adaptive disturbance observers are designed to estimate the disturbances with partial known information. By integrating disturbance observer based control with back-stepping method, a composite controller is designed. Here, the disturbance estimations are introduced into the design of virtual control laws in each step to compensate the mismatched disturbances. Rigorous stability analysis for the closed-loop system is established by direct Lyapunov function method. It is shown that the system output asymptotically converges to zero in spite of existing multiple mismatched disturbances. Finally, a simulation example is applied to demonstrate the effectiveness of the proposed method.  相似文献   

4.
Output feedback exponential stabilization of uncertain chained systems   总被引:4,自引:0,他引:4  
This paper deals with chained form systems with strongly nonlinear disturbances and drift terms. The objective is to design robust nonlinear output feedback laws such that the closed-loop systems are globally exponentially stable. The systematic strategy combines the input-state-scaling technique with the so-called backstepping procedure. A dynamic output feedback controller for general case of uncertain chained system is developed with a filter of observer gain. Furthermore, two special cases are considered which do not use the observer gain filter. In particular, a switching control strategy is employed to get around the smooth stabilization issue (difficulty) associated with nonholonomic systems when the initial state of system is known.  相似文献   

5.
A composite anti-disturbance control problem for a class of nonlinear systems is studied in this paper. There are two types of disturbances in the systems, one is the matched disturbance with bounded variation rate, the other is the unmatched time-varying disturbances. A nonlinear disturbance observer is designed to estimate the matched disturbances, which can be presented separately from the controller design. By integrating DOBC with back-stepping method, a composite DOBC and back-stepping controller is proposed, and the disturbance estimations are introduced into the design of virtual control laws to compensate the unmatched disturbances. In addition, it is proved that all the states in the closed-loop system are uniformly ultimate bounded (UUB). Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

6.
For a class of switched nonlinear systems with unmatched external disturbances and unknown backlash-like hysteresis, an adaptive fuzzy-based control strategy is proposed to handle the anti-disturbance issue. The unmatched external disturbances come from a switched exosystem. Our aim is to achieve the output tracking performance and the disturbance attenuation by using the adaptive fuzzy-based composite anti-disturbance control technique. First, based on the fuzzy logics, we design a switching adaptive fuzzy disturbance observer to estimate unmatched external disturbances. Second, a composite switching adaptive anti-disturbance controller is constructed. By means of the backstepping technique, disturbance estimations are added in each virtual control to offset the unmatched disturbances, which results in the different coordinate transformations. At last, the availability of the proposed approach is illustrated by a mass-spring-damper system.  相似文献   

7.
A disturbance rejection approach based on disturbance observer is proposed for a class of nonlinear systems subject to mismatched disturbances. The mismatched disturbances are described by exogenous systems and satisfy partially-known information, which enter the system in the different channels with the control input. The disturbance observer is designed to estimate the mismatched disturbances, which can be introduced separately from the controller design. By integrating disturbance observer with back-stepping method, the disturbance observer plus back-stepping (DOPBS) controller can be constructed to reject the mismatched disturbances. And the asymptotically stability for the closed-loop system can be achieved. Finally, simulation examples are given to demonstrate the feasibility and effectiveness of the proposed scheme compared with existing methods.  相似文献   

8.
This paper aims to develop a robust optimal control method for longitudinal dynamics of missile systems with full-state constraints suffering from mismatched disturbances by using adaptive dynamic programming (ADP) technique. First, the constrained states are mapped by smooth functions, thus, the considered systems become nonlinear systems without state constraints subject to unknown approximation error. In order to estimate the unknown disturbances, a nonlinear disturbance observer (NDO) is designed. Based on the output of disturbance observer, an integral sliding mode controller (ISMC) is derived to counteract the effects of disturbances and unknown approximation error, thus ensuring the stability of nonlinear systems. Subsequently, the ADP technique is utilized to learn an adaptive optimal controller for the nominal systems, in which a critic network is constructed with a novel weight update law. By utilizing the Lyapunov's method, the stability of the closed-loop system and the convergence of the estimation weight for critic network are guaranteed. Finally, the feasibility and effectiveness of the proposed controller are demonstrated by using longitudinal dynamics of a missile.  相似文献   

9.
This paper presents an additive-state-decomposition-based model predictive tracking control and disturbance rejection method for a permanent magnet synchronous motor (PMSM) servo system subject to unknown parameter perturbations, unmodeled dynamics, and time-varying load torque. The basic idea of this method is to equivalently decompose the original system into a primary system for handling the tracking control subproblem and a secondary system for dealing with the robust stabilization subproblem. A model predictive controller is designed for the primary system to achieve high-accuracy tracking of the reference speed. As for the secondary system, a novel high-order generalized extended state observer (HGESO) is constructed to estimate the multiple disturbances simultaneously, and a state feedback control law incorporating a disturbance compensator is developed to eliminate the adverse effect of the multiple disturbances on the system output. By combining the control inputs of the two subsystems together, the control objectives of the original system can be achieved. Both the stability criterion and design procedure of the closed-loop control system are developed. Finally, hardware-in-the-loop-based comparative experiments are conducted to demonstrate that the proposed method effectively suppresses the influence of the multiple disturbances on motor speed tracking accuracy and that the control system has both satisfactory dynamic performance and robustness.  相似文献   

10.
In this paper, the output feedback tracking control problem is investigated for polynomial nonlinear systems (PNSs) with measurement noises and mismatched disturbances. First, in order to suppress measurement noises, a polynomial observer is introduced to simultaneously estimate states and mismatched disturbances. Next, based on the idea of backstepping control, a novel output feedback controller is designed for PNSs to compensate mismatched disturbances. Command filters are employed to avoid the repeated derivatives of virtual control and measurement noises in the recursive controller design. Then, a sufficient condition in terms of the parameter-dependent linear matrix inequality (PDLMI) is derived to guarantee the boundedness of tracking errors and estimation errors. By utilizing the sum of squares (SOS) decomposition technique, the PDLMI is solved to obtain desired controller parameters. Finally, an example of dynamic point-the-bit rotary steerable drilling tool system is performed to demonstrate the effectiveness and feasibility of the proposed strategy.  相似文献   

11.
This paper investigates the finite-time stability (FTS) and finite-time stabilization for a class of nonlinear singular time-delay Hamiltonian systems, and proposes a number of new results on these issues. Firstly, an equivalent form is obtained for the nonlinear singular time-delay Hamiltonian systems by the singular matrix decomposition method, based on which some delay-independent and delay-dependent conditions on the FTS are derived for the systems by constructing a kind of novel Lyapunov function. Secondly, we use the equivalent form as well as the energy shaping plus damping injection technique to investigate the finite-time stabilization problem for a class of nonlinear singular port-controlled Hamiltonian (PCH) systems with time delay, and present a specific control design procedure for the systems. Finally, we give several illustrative examples to show the effectiveness of the results obtained in this paper.  相似文献   

12.
This paper deals with the problem of adaptive output feedback neural network controller design for a SISO non-affine nonlinear system. Since in practice all system states are not available in output measurement, an observer is designed to estimate these states. In comparison with the existing approaches, the current method does not require any information about the sign of control gain. In order to handle the unknown sign of the control direction, the Nussbaum-type function is utilized. In order to approximate the unknown nonlinear function, neural network is firstly exploited, and then to compensate the approximation error and external disturbance a robustifying term is employed. The proposed controller is designed based on strict-positive-real (SPR) Lyapunov stability theory to ensure the asymptotic stability of the closed-loop system. Finally, two simulation studies are presented to demonstrate the effectiveness of the developed scheme.  相似文献   

13.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

15.
This paper is concerned with the problem of adaptive disturbance attenuation for a class of nonlinear systems. The traditional adaptive methods are almost impossible to compensate the time-varying unknown disturbance by designing parameter adaptive laws without a priori knowledge about the bounds of external disturbances. To solve the problem, a new strategy is proposed by constructing an augmented system where the external disturbance is considered as another component of the augmented state vector. Based on this, a double-gain nonlinear observer is employed to estimate the state of the augmented nonlinear system. Further, an output feedback control strategy is designed, and it is proved that the proposed strategy ensures that all the signals are bounded and the tracking error exponentially converges to an adjustable compact set. Finally, an example is performed to demonstrate the validity of the proposed scheme.  相似文献   

16.
This paper deals with the containment control problem for multi-agent systems with exogenous disturbances. A disturbance observer-based control approach is employed to estimate the disturbances generated by an exogenous system. Consequently, distributed disturbance observer-based containment control protocols are proposed by using the state feedback control and the output feedback control, respectively. Furthermore, with the help of algebraic graph theory and Lyapunov stability theory, sufficient conditions are established to ensure that multi-agent systems with exogenous disturbances can achieve containment control via the disturbance observer-based approach. Finally, the effectiveness of our theoretical results is verified by providing numerical simulation examples.  相似文献   

17.
In this paper, two output feedback controllers are proposed for motion control of double-rod electro-hydraulic servo actuators with matched and mismatched disturbances rejection. All of them employ an linear extended state observer (LESO) to achieve real-time estimates of the unmeasured system states and matched disturbance, and a nonlinear disturbance observer (NDO) to estimate the largely unknown mismatched disturbance at the same time. Thus, the disturbances are compensated via their online estimates in a feedforward way when implementing the resulting control algorithms, respectively. Furthermore, a continuously differentiable friction model is employed to compensate the majority of nonlinear friction existing in the system and reduce the burden of the NDO. Specially, one of the proposed control schemes utilizes model-based compensation terms depending on the desired trajectory to be tracked instead of the estimated system states. By doing this, online computation burden can be reduced. The stability of the whole closed-loop system under each control scheme is guaranteed by theoretical analysis. Moreover, the applicability of each control scheme are validated by experiments in different working conditions.  相似文献   

18.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

19.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

20.
This article develops an asymptotic tracking control strategy for uncertain nonlinear systems subject to additive disturbances and parametric uncertainties. To fulfill this work, an adaptive-gain disturbance observer (AGDO) is first designed to estimate additive disturbances and compensate them in a feedforward way, which eliminates the impact of additive disturbances on tracking performance. Meanwhile, an updated observer gain law driven by observer estimation errors is adopted in AGDO, which reduces the conservatism of observer gain selection and is beneficial to practical implementation. Also, the parametric uncertainties existing in systems are addressed via an integrated parametric adaptive law, which further decreases the learning burden of AGDO. Based on the parametric adaption technique and the proposed AGDO approach, a composite controller is employed. The stability analysis uncovers the system asymptotic tracking performance can be attained even when facing time-variant additive disturbances and parametric uncertainties. In the end, comparative experimental results of an actual mechatronic system driven by a dc motor uncover the validity of the developed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号