首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
This paper studies the extended dissipativity (ED) issue for T-S fuzzy systems (TSFSs) via reliable memory control scheme and aperiodic sampled-data (ASD) method. First, considering the random variation of sampling interval and the time delays (TDs) of sampling signal transmission in the communication network, a reliable aperiodic memory sampled-data control (RAMSDC) strategy is proposed. Then, the developed delay-dependent Lyapunov-Krasovskii functional (LKF) with some two-sided looped-functional (TSLF) terms is constructed to fully utilize sampled state information. The introduced free matrices in the TSLF need not to be positive definite, which reduces the conservativeness of the obtained results. Next, a sufficient condition is given to ensure the ED, and the controller gain matrix is obtained by means of linear matrix inequality (LMI) technique. At last, the effectiveness of theoretical results in practical application is verified by the use of a truck-trailer model.  相似文献   

3.
This paper investigates the problem of master–slave synchronization of chaotic Lur’e systems (CLSs) with time delays by sampled-data control. First, a novel Lyapunov–Krasovskii functional (LKF) is constructed with some new augmented terms, which can fully capture the system characteristics and the available information on the actual sampling pattern. In comparison with existing results, the constraint condition of the positive definition of the LKF is more relax, since it is positive definite only requiring at sampling instants. Second, based on the LKF, a less conservative synchronization criterion is established. Third, the desired estimator gain can be designed in terms of the solution to linear matrix inequalities (LMIs). The obtained conditions ensure the master–slave synchronization of CLSs under a longer sampling period than remarkable existing works. Finally, three numerical simulations of Chua’s circuit and neural network are provided to show the effectiveness and advantages of the proposed results.  相似文献   

4.
This paper considers a stability analysis problem for continuous-time Markovian jump linear systems under aperiodic samplings which are represented as Markovian jump linear systems with input delay. For the systems, this paper constructs a Lyapunov functional by utilizing a fragmented-delay state, which is defined between the last sampling instant and the present time, and a new state space model of the fragmented state. Based on the Lyapunov functional, a stability criterion is derived in terms of linear matrix inequalities by using reciprocally convex approach and integral inequality. Here, the reciprocally convex approach and integral inequality are associated not only with the current state, the delayed state, and the maximum-admissible delay state, but also with the fragmented-delay state. The simulation result shows the effectiveness of the proposed stability criterion.  相似文献   

5.
In this paper, the master-slave synchronization of the chaotic Lur’e system (MSSCLS) with time-varying delay is investigated. At first, a Lyapunov-Krasovskii functional (LKF) with nonlinear terms and time-varying delay is constructed. Secondly, when the derivative of LKF is estimated, the improved stability criterion is obtained by considering the relationship between the integral terms generated after using the Bessel-Legendre inequality (BLI) and introducing the integral-term-related free-weighting-matrices. Finally, case studies based on Chua’s circuit are carried out to test and verify the effectiveness of the proposed synchronization criterion, and the results are compared with the latest methods to show the advantages of the proposed synchronization criterion.  相似文献   

6.
In this paper, the synchronization problem of fractional-order neural networks (FNNs) with chaotic dynamics is investigated via the intermittent control strategy. Two types of intermittent control methods, the aperiodic one and the periodic one, are applied to achieve the synchronization of the considered systems. Based on the dynamic characteristics of the intermittent control systems, the piecewise Lyapunov function method is employed to derive the synchronization criteria with less conservatism. The results under the aperiodically intermittent control show more generality than the ones via the periodically intermittent control. For each of the aperiodic and periodic cases, a simple controller design process is presented to show how to design the corresponding intermittent controller. Finally, two numerical examples are provided to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

7.
8.
This article deals with the exponential stabilization problems of Takagi–Sugeno (T–S) fuzzy system under aperiodic sampling. The objective is to solve the H, L2?L, passive and dissipative stability and stabilization problems based on a unified performance index-extended dissipativity. Some new stability conditions consisting of both exponential stability and extended dissipativity criterion are first established. A sampling period dependent Lyapunov–Krasovskii function together with a novel efficient integral inequality, which has the advantage of reducing conservativeness, is adopted. On the basis of the stability conditions, a sampled-data controller that can not only exponentially stabilize the system but also guarantee the prescribed extended-dissipativity performance is then designed. Moreover, an exponential decay rate can be set in advance to achieve better system performance. Finally, a quarter-vehicle active suspension system with considering payload uncertainties and aperiodic sampling is provided for evaluating the validity and superiority of the extended dissipative control approach proposed in this article.  相似文献   

9.
In this paper, the finite-time synchronization problem of complex dynamic networks with time delay is studied via aperiodically intermittent control. By compared with the existed results concerning aperiodically intermittent control, some new results are obtained to guarantee the synchronization of networks in a finite time. Especially, a new lemma is proposed to reduce the convergence time. In addition, based on aperiodically intermittent control scheme, the essential condition ensuring finite-time synchronization of dynamic networks is also obtained, and the convergence time is closely related to the topological structure of networks and the maximum ratio of the rest width to the aperiodic time span. Finally, a numerical example is provided to verify the validness of the proposed theoretical results.  相似文献   

10.
11.
This paper investigates the problem of designing decentralized impulsive controllers for synchronization of a class of complex dynamical networks (CDNs) about some prescribed goal function. The CDNs are allowed to possess nonidentical nodes and coupling delays. Two cases of time-varying coupling delays are considered: the case where the coupling delays are uniformly bounded, and the case where the derivatives of the coupling delays are not greater than 1. The synchronization analysis for the first case is performed by applying a time-varying Lyapunov function based method combined with Razumikhin-type technique, while the synchronization analysis for the second case is conducted based on a time-varying Lyapunov functional based method. For each case, by utilizing a convex combination technique, the resulting synchronization criterion is formulated as the feasibility problem of a set of linear matrix inequalities (LMIs). Then, sufficient conditions on the existence of a decentralized impulsive controller are presented by employing these newly obtained synchronization criteria. The local impulse gain matrices can be designed by solving a set of LMIs. Finally, two representative examples are given to illustrate the correctness of the theoretical results.  相似文献   

12.
This paper is concerned with stochastic stabilization of Markovian jump systems. By using some novel analysis technique, especially the established quasi time-homogeneous property, the aperiodic intermittent and sampled-data strategies have been integrated into stochastic stabilized theory. A criterion is derived, which ensures the stabilization via the aperiodic intermittent stochastic feedback based on sampled-data of state and mode of Markovian jump systems. Two numericalexamples are given to show the effectiveness of our criterion.  相似文献   

13.
By considering network transmission mode, this paper addresses the finite-time multi-switching synchronization problem for two kinds of multiple chaotic systems. For multiple same-order chaotic systems, we construct the general switching rules and analyze the existence of switching cases. The presented schemes guarantee the states of each derive system to be finite-timely synchronized with the desired states of every respond system in the different transmission paths and switching sequences. For multiple different order chaotic systems, we analyze a special multi-switching hybrid synchronization behavior, where part of the states are completely synchronized and the others belong to combination synchronization. Moveover, the easily verifiable criterion is derived for such synchronization. Finally, numerical examples are given to show the effectiveness of the presented theoretical results.  相似文献   

14.
The synchronization for a class of switched uncertain neural networks (NNs) with mixed delays and sampled-data control is researched in this paper. When a switching signal occurs in a sampling interval, the controller cannot switch until the next sampling instant. There is a mismatch between the system and the controller. Thus, we devise the control strategy to guarantee that the switched NNs can be synchronized. The proposed Lyapunov-Krasovskii functional (LKF) can make full use of system information. By use of an improved integral inequality, some sufficient stability conditions formed by linear matrix inequalities (LMIs) are derived for the synchronization of switched NNs. Average dwell time (ADT) is obtained as a form of inequality that includes the sampling interval. At last, the feasibility of the proposed method is proved by some numerical examples.  相似文献   

15.
《Journal of The Franklin Institute》2022,359(18):10558-10577
In this article, a secure exponential synchronization problem is studied for multiplex Cohen-Grossberg neural networks under stochastic deception attacks. In order to resist the malicious attack from attackers modifying the data in transmission module under a certain probability, an attack resistant controller, which has the ability to automatically adjust its own parameters according to external attacks, is designed for each Cohen-Grossberg neural subnet. An exponential adaptive quantitative controlling algorithm is proposed to synchronize Cohen-Grossberg neural network state, and a sufficient criterion is established to realize the synchronization error tends to zero under malicious attacks. Moreover, synchronization mode we study is the synchronization among Cohen-Grossberg neural subnets in multiplex networks. An example is presented to testify the validity of proposed theoretical framework.  相似文献   

16.
In this paper, we concern the finite-time synchronization problem for delayed dynamical networks via aperiodically intermittent control. Compared with some correspondingly previous results, the intermittent control can be aperiodic which is more general. Moreover, by establishing a new differential inequality and constructing Lyapunov function, several useful criteria are derived analytically to realize finite-time synchronization for delay complex networks. Additionally, as a special case, some sufficient conditions ensuring the finite-time synchronization for a class of coupled neural network are obtained. It is worth noting that the convergence time is carefully discussed and does not depend on control widths or rest widths for the proposed aperiodically intermittent control. Finally, a numerical example is given to demonstrate the validness of the proposed scheme.  相似文献   

17.
Passivity-based boundary control is considered for time-varying delay reaction-diffusion systems (DRDSs) with boundary input-output. By virtue of Lyapunov functional method and inequality techniques, sufficient conditions are obtained for input strict passivity and output strict passivity of DRDSs, respectively. When the parameter uncertainties appear in DRDSs, sufficient conditions are presented to guarantee the robust passivity. Moreover, we apply our theoretical results to the synchronization problem of coupled delay reaction-diffusion systems and get the criterion to ensure the asymptotic synchronization. Finally, numerical simulations are provided to show the validity of our theoretical results.  相似文献   

18.
This work realizes lag quasi-synchronization of incommensurate fractional-order memristor-based neural networks (FMNNs) with nonidentical characteristics via quantized control. The motivations behind this research work are threefold: (1) quantized controllers, which generate discrete control signals, can be more easily realized in computers than non-quantized controllers, and can consume smaller communication capacity; (2) incommensurate orders in a single FMNN and nonidentical characteristics in drive-response FMNNs are inescapable due to the differences among the circuit elements used to implement FMNNs; (3) convergence analysis of delayed incommensurate fractional-order nonlinear systems, which is the basis for the derivation of synchronization criterion, has not been handled perfectly. As an effective tool for convergence analysis of delayed incommensurate fractional-order nonlinear systems, especially for estimation of ultimate state bound, a vector fractional Halanay inequality is established at first. Then, a quantized synchronization controller, in which the dead-zone is introduced into some logarithmic quantizers to avoid chattering phenomenon, is designed. By means of vector Lyapunov function together with the newly derived vector fractional Halanay inequality, the synchronization criterion is proved theoretically. Lastly, numerical simulations supplementarily illustrate the correctness of the synchronization criterion. In contrast with the hypotheses in the relevant literature, the hypotheses in this paper are weaker.  相似文献   

19.
This paper is concerned with the problem of robust synchronization of a class of complex dynamical networks with time-varying delays and reaction–diffusion terms. To reflect most of the dynamical behaviors of the system, the parameter uncertainties are considered. A sampled-data controller with m stochastically varying sampling periods whose occurrence probabilities are given constants is considered. The control objective is that the trajectories of the system by designing suitable control schemes track the trajectories of the system with sample-data control. It is shown that, through Lyapunov stability theory, the proposed sample-data controllers are successful in ensuring the achievement of robust synchronization of complex dynamical networks even in the case of uncertainity and Markovian jumping parameters. By utilizing the Lyapunov functional method, Jensen’s inequality, Wirtinger’s inequality and lower bounds theorem, we establish a sufficient criterion such that, for all admissible parameter uncertainties, the complex dynamical network is robustly synchronized. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.  相似文献   

20.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号