首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper, the achievable tracking performance limitations of discrete-time, multi-input multi-output (MIMO) networked control systems (NCSs) are studied. The channel is modeled as an additive white Gaussian noise and signal-to-noise ratio (SNR) limited channel with feedback. Under this framework, the closed relationships among stabilization, tracking performance, and SNR limited are quantitatively revealed. Some new results a.erived according to the allpass factorization and Youla parameterization of two degrees of freedom controller. The results show that the best tracking performance is in connection with the unstable poles, non-minimum phase zeros of the system. It is also demonstrated that the tracking performance will be badly degraded by feedback channel noise and due to the SNR limited. Finally, a simulation example is presented to validate the conclusions.  相似文献   

2.
This paper investigates the optimal tracking performance of the multiple-input multiple-output (MIMO) discrete-time networked control systems (NCSs) considering the quantization of communication channel. The tracking performance is adopted for the H2 square error criterion. The optimal tracking performance expression is obtained by using the co-prime factorization, the partial factorization, the inner–outer factorization and the spectral decomposition methods. Moreover, the paper also includes the exploration of the optimal tracking performance with input power constraint. The obtained results have demonstrated that the optimal tracking performance is influenced by the non-minimum phase zeros, unstable poles and their directions, the reference signal and the quantization interval. Moreover the theoretical results have also been proven using a number of different examples.  相似文献   

3.
The optimal tracking problem for single-input–single-output (SISO) networked control system over a communication channel with packet dropouts is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. It is shown that the optimal tracking performance is constrained by nonminimum phase zeros, unstable poles, the characteristics of the reference signal and packet dropout probability, and the optimal controller is obtained. It is also shown that when the communication constraint does not exist, the optimal tracking performance reduces to the existing normal tracking performance of the control system without a communication channel. The result shows how the packet dropouts probability of a communication channel may fundamentally constrain a control system's tracking ability. Some typical examples and simulations are given to illustrate the theoretical results.  相似文献   

4.
This paper studies the trade-off performance between tracking performance and control input energy of the multi-input multi-output(MIMO), linear and time-invariant(LTI) system over an additive coloured Gaussian noise(ACGN) channel and the encoder-decoder strategies. The restriction that filter in the encoder-decoder strategy must be diagonal matrix is not necessary. And some new results are derived according to the inner-outer factorization. The results show that the trade-off performance is correlated to the unstable pole, non-minimum phase zero of the system. Also new poles and zeros generated by the non-diagonal encoder-decoder strategies may affect the trade-off performance. At last, two examples with different filters and different encoder-decoder strategies are discussed to validate the conclusions. The various encoder-decoder strategies revealed by the simulations may enhance or deteriorate the trade-off performance proposed in this paper.  相似文献   

5.
In this paper, the state estimation problem for discrete-time networked systems with communication constraints and random packet dropouts is considered. The communication constraint is that, at each sampling instant, there is at most one of the various transmission nodes in the networked systems is allowed to access a shared communication channel, and then the received data are transmitted to a remote estimator to perform the estimation task. The channel accessing process of those transmission nodes is determined by a finite-state discrete-time Markov chain, and random packet dropouts in remote data transmission are modeled by a Bernoulli distributed white sequence. Using Bayes’ rule and some results developed in this study, two state estimation algorithms are proposed in the sense of minimum mean-square error. The first algorithm is optimal, which can exactly compute the minimum mean-square error estimate of system state. The second algorithm is a suboptimal algorithm obtained under a lot of Gaussian hypotheses. The proposed suboptimal algorithm is recursive and has time-independent complexity. Computer simulations are carried out to illustrate the performance of the proposed algorithms.  相似文献   

6.
This paper deals with the interval type-2 (IT2) fuzzy tracking control problem for nonlinear networked control systems with unreliable communication links. The plant is described by an IT2 fuzzy system, and the IT2 fuzzy sampled-data tracking controller is designed under the unreliable communication mechanism. By utilizing the Lyapunov theory, the stability demonstration is carried out under the mathematical expectation. The characteristics of membership functions are applied to enhance the stability of the IT2 fuzzy system. With the more sampling information used in the stability analysis, the less conservative sufficient condition is provided based on which a networked tracking controller is designed to ensure the anticipant tracking performance. Finally, the efficiency and the merits of this paper are shown by two simulation examples.  相似文献   

7.
Recently, a new non-uniform sampling digital phase-locked loop, the time-delay digital tanlock loop (TDTL), has been proposed. We have analyzed in a previous work the first- and second-order TDTLs under noise-free conditions. In this work, we analyze the performance of the TDTL in the presence of additive Gaussian noise for different values of the loop parameters. It is shown that the expected value of the steady-state phase errors at the input and the output of the phase error detector are equal to the noise-free steady-state values, while the variance is significantly reduced when the signal-to-noise ratio is increased or the phase shift introduced by the time-delay approaches 90°. The locking ranges of the TDTL parameters under noise-free conditions are unchanged by the presence of noise.  相似文献   

8.
In this paper, we present a supervisory discrete-time predictive control strategy for load/frequency control problems in networked multi-area power systems subject to coordination constraints. Coordination between the control center and the spatially distributed areas is accomplished via data networks subject to communication latency modeled by time-varying time-delay. The aim here is finding supervising strategies able to reconfigure, whenever necessary in response to unexpected load changes and/or faults, the nominal set-points on frequency and generated power to the generators of each area so that viable evolutions would arise for the overall power system and a new sustainable equilibrium is reached. In order to demonstrate the effectiveness of the strategy, examples on a four-area power system are presented.  相似文献   

9.
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.  相似文献   

10.
This article considers the nonlinear time-delay system with full-state constrains and actuator hysteresis. Compared with the previous research on input hysteresis phenomenon, all states in the system are required to be constrained in a bounded compact set and the direction of hysteresis is unknown. Thus, the system is difficult to be stabilized and get perfect error tracking performance, and the design procedure is more complicated. By combining barrier Lyapunov functions (BLFs) and Nussbaum functions, a new virtual controller is designed, which combines the properties of Nussbaum function with fuzzy logic systems (FLSs). Furthermore, considering that the rate-dependent characteristic of actuator hysteresis will adversely affect the stability of networked control systems (NCSs), a first-order filter is used to solve the problem, but it brings challenges to the design of Lyapunov–Krasovskii functions (KLFs). Thus, a new LKFs is constructed to compensate for the adverse effects of state delay on the nonlinear system. What’s more, this article propose event-triggered technique to solve the coupling effect of the system communication resource constrains. The proposed adaptive control strategy ensures the boundedness of all signals and does not violate the state constraints, and the controller avoids Zeno behavior, and the tracking error fluctuates around zero in a predetermined compression range. Finally, two simulations results verify the effectiveness of the adaptive control strategy.  相似文献   

11.
This paper is concerned with the network-based H fuzzy filtering for non-linear systems with parameter uncertainties under a novel adaptive discrete event-triggered communication scheme (DETCS). Based on interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy model, the non-linear systems with parameter uncertainties are represented as a class of IT2 T–S fuzzy systems. In the design process, a novel adaptive DETCS is proposed to reduce the usage of system resources and adapt the variation of plant output, and a novel networked IT2 T–S fuzzy filter is applied to improve the flexibility of filter design. By employing the time-delay systems modeling method, the filtering-error-system is modeled as a class of interval time-varying delayed IT2 T–S fuzzy systems with asynchronously and imperfectly matched membership functions, and further conditionally expressed as a favorable form. Then, some relaxed stability criteria are established to determine that this class of delayed IT2 T–S fuzzy systems is asymptotically stable with a prescribed H disturbance attenuation performance. Also, the co-design of parameter matrices of adaptive DETCS and filter is implemented. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, a novel fractional-order partial pole assignment (FPPA) control algorithm is proposed for systems with time-delay. The FPPA control algorithm is essentially an extension of the original pole assignment, which could change undesired pole locations into desired pole locations. The presented control scheme can be used on open loop poorly damped or unstable systems, which is superior to most other time-delay compensation schemes. The discussion on choosing desirable pole locations is presented based on stability and resonance conditions in the frequency domain. The controlled system is also studied in the time domain based on different transient performance indicators, namely overshoot, settling time, and rising time. In addition, the parameters of the proposed FPPA control algorithm are tunable, thus the control scheme can be used to satisfy different control requirements. Simulation results of stable and unstable fractional-order plants with time-delay are shown to verify the effectiveness and practicability of the FPPA control algorithm.  相似文献   

13.
Data transmission via optical fiber is a new discipline of communication theory. The principal difference from conventional baseband data transmission, which is characterized by a signal independent additive Gaussian noise, is the existence of a signal dependent shot noise.This paper presents a technique for estimating the error probability performance of digital systems with inter-symbol interference and signal dependent additive noise. For binary antipodal (±1) systems, the approximate upper bound to the error probability is twice the lower bound. Hence either can be taken as a good approximation to the actual error probability. The technique is then applied to a model of some promising optical data communication systems and a good approximation to the error probability is obtained. Some observations about the effect of various system parameters on the error probability and some numerical examples are presented.  相似文献   

14.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

15.
Oscillatory systems with time delays exist widely in actual industrial process. This paper discusses the design and tuning of linear active disturbance rejection controller (LADRC) for the oscillatory systems with large time delays. First, internal model controllers (IMC) are designed for the oscillatory systems to compensate the time-delay and cancel the complex poles; then they are implemented with the general LADRC structures and approximated with observer-bandwidth-based LADRCs. Afterwards, the third-order LADRC tuning formulas for oscillatory systems are derived from the IMC controllers. Simulation examples and load frequency control(LFC) in power system with communication delay are used to test the applicability of the proposed tuning formula.  相似文献   

16.
17.
This paper proposes a fuzzy model predictive control (FMPC) combined with the modified Smith predictor for networked control systems (NCSs). The network delays and data dropouts are problems, which greatly reduce the controller performance. For the proposed controller, the model of the controlled system is identified on-line using the Takagi – Sugeno (T-S) fuzzy models based on the Lyapunov function. There are two internal loops in the proposed structure. The first is the loop around the FMPC, which predicts the future outputs. The other is the loop around the plant to give the error between the system model and the actual plant. The proposed controller is designed for controlling a DC servo system through a wireless network to improve the system response. The practical results based on MATLAB/SIMULINK are established. The practical results are indicated that the proposed controller is able to respond the networked time delay and data dropouts compared to other controllers.  相似文献   

18.
From an interdisciplinary perspective, the event-triggered scheme, the state observer, and the nonlinear disturbance observer are introduced in a robust tracking control to study the networked electro-hydraulic servo system control problems with digital communication challenge, sensor installation restricted problem, matched modeling uncertainties, and mismatched disturbances. Control packets are likely to be delayed or even lost in the networked control system when the communication medium is shared by multiple nodes and the available communication bandwidth is limited. Therefore, it is necessary to save communication resources. To improve the control performance and the efficiency of the network resource utilization, the event-triggered scheme is introduced. Specifically, the practical application of the event-triggered scheme in an actual electro-hydraulic servo system is a breakthrough in this paper. In addition, to obtain the real-time states of the unmeasurable system and compensate for both matched disturbances and external disturbances simultaneously, the state observer and the nonlinear disturbance observer are collaboratively designed. Finally, to evaluate the control performance of the designed controller, the related comparative experiments are carried out in an actual system. The results show that theoretical analysis and experimentation are cross verified.  相似文献   

19.
This paper revisits the coordinated tracking of networked systems in the presence of input saturation. For discrete-time networked systems with high-order integrator typed dynamics and input saturation, nonlinear feedback laws are constructed and then sufficient conditions are established to guarantee the global consensus tracking of the systems. Finally, numerical simulations are given to support the theoretical results.  相似文献   

20.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号