首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, the master-slave synchronization of the chaotic Lur’e system (MSSCLS) with time-varying delay is investigated. At first, a Lyapunov-Krasovskii functional (LKF) with nonlinear terms and time-varying delay is constructed. Secondly, when the derivative of LKF is estimated, the improved stability criterion is obtained by considering the relationship between the integral terms generated after using the Bessel-Legendre inequality (BLI) and introducing the integral-term-related free-weighting-matrices. Finally, case studies based on Chua’s circuit are carried out to test and verify the effectiveness of the proposed synchronization criterion, and the results are compared with the latest methods to show the advantages of the proposed synchronization criterion.  相似文献   

2.
This paper is concerned with the stochastic synchronization problem for a class of Markovian hybrid neural networks with random coupling strengths and mode-dependent mixed time-delays in the mean square. First, a novel inequality is established which is a double integral form of the Wirtinger-based integral inequality. Next, by employing a novel augmented Lyapunov–Krasovskii functional (LKF) with several mode-dependent matrices, applying the theory of Kronecker product of matrices, Barbalat’s Lemma and the auxiliary function-based integral inequalities, several novel delay-dependent conditions are established to achieve the globally stochastic synchronization for the mode-dependent Markovian hybrid coupled neural networks. Finally, a numerical example with simulation is provided to illustrate the effectiveness of the presented criteria.  相似文献   

3.
In this paper, several resultful control schemes based on data quantization are proposed for complex-valued memristive neural networks (CVMNNs). Firstly, considering the finite communication resources and the interference of failures to the system, a state quantized sampled-data controller (SQSDC) is designed for CVMNNs. Next, taking the interference of gain fluctuations into account, a non-fragile sampled-data control (SDC) law is proposed for CVMNNs in the framework of data quantification. In order to full capture more inner sampling information, a newly Lyapunov-Krasovskii function (LKF) is constructed on the basis of the proposed triple integral inequality. After that, in the framework of taking full advantage of the property of Bessel-Legendre inequality, a time-dependent discontinuous LKF (TDDLKF) is proposed for CVMNNs with SQSDC. Based on the useful LKF, several stability criteria are established. Finally, the numerical simulations are provided to substantiate the validity and less conservatism of the proposed schemes.  相似文献   

4.
This paper investigates the problem of master–slave synchronization of chaotic Lur’e systems (CLSs) with time delays by sampled-data control. First, a novel Lyapunov–Krasovskii functional (LKF) is constructed with some new augmented terms, which can fully capture the system characteristics and the available information on the actual sampling pattern. In comparison with existing results, the constraint condition of the positive definition of the LKF is more relax, since it is positive definite only requiring at sampling instants. Second, based on the LKF, a less conservative synchronization criterion is established. Third, the desired estimator gain can be designed in terms of the solution to linear matrix inequalities (LMIs). The obtained conditions ensure the master–slave synchronization of CLSs under a longer sampling period than remarkable existing works. Finally, three numerical simulations of Chua’s circuit and neural network are provided to show the effectiveness and advantages of the proposed results.  相似文献   

5.
This paper investigates the stability of linear control systems with aperiodic sampled data and communication delays. A systematic analysis method is presented and then it is applied to an electric power market. Firstly, the sampled-data system is transformed into a system with a special time-varying delay via the input delay method. Secondly, a less conservative stability criterion is derived based on Lyapunov theory. Several augmented terms and an extra integral term are introduced during the constructing of candidate Lyapunov–Krasovskii functional (LKF); and an improved free-weighting matrix approach is used to handle with the LKF itself and its derivative for obtaining the relaxed conditions ensuring the positive and decreasing requirements of the LKF. The benefit of those treatments on the conservativeness-reducing is analyzed and verified based on a simple numerical example. Finally, the application of the proposed method to a simplified electric power market is investigated, including modeling the system with market clearing time and communication delay, and determining the stability region. The application also shows the practical significance of the reducing of the conservativeness.  相似文献   

6.
This paper deals with the problem of non-fragile sampled-data stabilization analysis for a class of linear systems with probabilistic time-varying delays via new double integral inequality approach. Based on the auxiliary function-based integral inequality (AFBII) and with the help of some mathematical approaches, a new double integral inequality (NDII) is developed. Then, to demonstrate the merits of the proposed inequality, an appropriate Lyapunov–Krasovskii functional (LKF) is constructed with some augmented delay-dependent terms. By employing integral inequalities, an enhanced stability criterion for the concerned system model is derived in terms of linear matrix inequalities (LMIs). Finally, three benchmark illustrative examples are given to validate the effectiveness and advantages of the proposed results.  相似文献   

7.
The cluster synchronization issues are investigated for directed coupled inertial reaction-diffusion neural networks (CIRDNNs) with nonidentical nodes by imposing two effective pinning control. A novel Lyapunov-Krasovskii functional (LKF) is established to directly analyze the dynamic behavior of CIRDNNs and deal with reaction-diffusion term, inertia term and coupling term. Moreover, based on different desired cluster synchronization states including a set of un-decoupled trajectories and the particular solutions of the decoupled node systems, two class of synchronization criteria in view of algebraic inequalities are derived under two different communication topologies, respectively. Finally, two typical examples are given to verify the theoretical results.  相似文献   

8.
This paper studies the stochastic stability and extended dissipativity analysis for delayed Markovian jump neural networks (MJNNs) with partly unknown transition rates (PUTRs) using novel integral inequality. A new double integral inequality with augmented vector is introduced through inequality technique and the zero-valued equality approach, which can more efficiently estimate the derivative of the triple integral inequality. Next, an augmented Lyapunov-Krasovskii functional (LKF) with delay-product-type (DPT) is constructed. Besides, with the introduced integral inequality, the augmented LKF and some other analytical techniques, some less conservative extended dissipation conditions are obtained in the form of linear matrix inequality (LMI). Finally, several examples are provided to illustrate the effectiveness of the obtained results.  相似文献   

9.
This paper investigates the stability and stabilizability of complex-valued memristive neural networks (CVMNNs) with random time-varying delays via non-fragile sampled-data control. Taking the influence of gain fluctuations into account, a non-fragile sampled-data controller is designed for CVMNNs. Compared with the existing control schemes, the one here is more applicable and can effectively save the communication resources. The assumption on activation functions of CVMNNs is relaxed by only needing the complex-valued activation functions satisfying the Lipschitz condition. By constructing a suitable Lyapunov–Krasovskii functional (LKF), new stability and stabilizability criteria are derived for CVMNNs. Different from the existing results with the maximum absolute values of memristive connection weights, our ones are based on the average values of the maximum and minimum of the memristive connection weights. Finally, numerical simulations are given to validate the effectiveness of the theoretical results.  相似文献   

10.
《Journal of The Franklin Institute》2022,359(18):10653-10675
Without considering identical systems, this paper investigates the finite-time lag projective synchronization of nonidentical fractional delayed memristive neural networks (FDMNN) by designing a novel fractional sliding mode controller (SMC). Due to the existence of memristor, the research is under the framework of Filippov solution. We firstly construct a fractional integral sliding mode surface (SMS). Based on sliding mode control theory and Lyapunov stability theorem, a novel fractional SMC is proposed to realize the lag projective synchronization of nonidentical FDMNN in finite time, and the synchronization setting time is less conservative than the existing results. As the special cases, some sufficient conditions are extended to projective synchronization, lag synchronization, anti-lag synchronization of nonidentical FDMNN in finite time, which improve and enrich some existing results. At last, a simulation example is given to prove the validity of the conclusions.  相似文献   

11.
This paper is concerned with the stability analysis of systems with two additive time-varying delay components in an improved delay interconnection Lyapunov–Krasovskii framework. At first, an augmented vector and some integral terms considering the additive delays information in a new way are introduced to the Lyapunov–Krasovskii functional (LKF), in which the information of the two upper bounds and the relationship between the two upper bounds and the upper bound of the total delay are both fully considered. Then, the obtained stability criterion shows advantage over the existing ones since not only an improved delay interconnection LKF is constructed but also some advanced techniques such as the free-matrix-based integral inequality and extended reciprocally convex matrix inequality are used to estimate the upper bound of the derivative of the proposed LKF. Finally, a numerical example is given to demonstrate the effectiveness and to show the superiority of the proposed method over existing results.  相似文献   

12.
Novel stability criterion is presented for the existence, uniqueness and globally asymptotic stability of the equilibrium point of a class of cellular neural networks with time-varying delays. Based on Gu's discretized Lyapunov–Krasovskii functional (LKF) theory, a novel vector LKF is introduced by dividing the variation interval of the time delay into several subintervals with equal length. By using the homeomorphism mapping principle, free-weighting matrix method and linear matrix inequality (LMI) techniques, the obtained condition is less conservative than some previous results. Three examples are also given to show the effectiveness of the presented criterion.  相似文献   

13.
This paper is concerned with the robust stability analysis for uncertain systems with interval time-varying delay. In order to make full use of the delay information, a novel Lyapunov–Krasovskii functional (LKF) containing single, double, triple and quadruple integral terms is introduced, and a triple-integral state variable is also used. Then, by using the Wirtinger-based single and double integral inequality, introducing some positive scalars, the derivative of the constructed LKF is estimated more accurately. As a result, some stability criteria are derived, which have less conservatism and decision variables. Numerical examples are also given to show the effectiveness of the proposed method.  相似文献   

14.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

15.
This paper investigates the issues of extended dissipativity performance and stabilization for T–S fuzzy model (TSFM) based wind power generation systems (WPGSs). Firstly, the stochastic coupled leakage time-varying delays (CLTVDs) and randomly occurring uncertainty parameters (ROUPs) are firstly introduced for constructing more general TSFM. Second, on basis of the time-delay-product function (TDPF) and looped function strategy, a relaxed Lyapunov–Krasovskii functional (LKF) with the negative definite term and the time-varying matrix is developed, which can get the utmost out of the information of various communication delays. Third, by utilizing the tighter integral inequalities and reciprocally convex combination technique (RCCT), new stabilization criteria are established in terms of the linear matrix inequalities (LMIs). Simultaneously, the desired fuzzy sampled-data control (FSDC) is designed under the state quantization mechanism. Finally, a simulation example is presented to validate the efficiency of the proposed result.  相似文献   

16.
Although the drive-response synchronization problem of memristive recurrent neural networks (MRNNs) has been widely investigated, all the existing results are based on the assumption that the parameters of the drive system are known in prior, which are difficult to implement in real-life applications. In the present paper, a Stop and Go adaptive strategy is proposed to investigate the synchronization control of chaotic delayed MRNNs with unknown memristive synaptic weights. Firstly, by defining a series of measurable logical switching signals, a switched response system is constructed. Subsequently, by utilizing the logical switching signals, several suitable parameter update laws are proposed, then some different adaptive controllers are devised to guarantee the synchronization of unknown MRNNs. Since the parameter update laws are weighted by the logical switching signals, they will work or stop automatically with the switch of the unknown weights of drive system. Finally, two numerical examples with their computer simulations are provided to illustrate the effectiveness of the proposed adaptive synchronization schemes.  相似文献   

17.
In this paper, the distributed adaptive fault estimation issue using practical fixed-time design is investigated for attitude synchronization control systems. A distributed fault estimation observer is proposed based on the fixed-time technique. Meanwhile, a novel fixed-time adaptive fault estimation algorithm is also constructed to guarantee convergence rate and improve estimation rapidity. The fault estimation error is uniformly ultimately bounded and is practically fixed-time stable, which converges to the neighborhood of the origin in a fixed time. Finally, simulation results of an attitude synchronization control system are presented to verify the effectiveness of proposed techniques.  相似文献   

18.
An integral predictor-based dynamic surface control scheme is developed with prescribed performance (IPPDSC) for multi-motor driving servo systems in this paper. By employing a novel finite-time performance function and an improved error transformation, the tracking error is limited within a prescribed zone in any preset time without having the overrun and the singularity problem. Furthermore, integral state predictors are designed to update neural network weights to handle high-frequency oscillations under large adaptive gains. Different from the existing approaches, an integral term of prediction error is introduced to eliminate the steady-state error and avoid chattering. In addition, a synchronization controller based on the mean relative coupling structure is proposed to solve the coupling problem between synchronization and tracking. Finally, simulation and experimental results are presented to demonstrate the effectiveness of the designed approach.  相似文献   

19.
The synchronization for a class of switched uncertain neural networks (NNs) with mixed delays and sampled-data control is researched in this paper. When a switching signal occurs in a sampling interval, the controller cannot switch until the next sampling instant. There is a mismatch between the system and the controller. Thus, we devise the control strategy to guarantee that the switched NNs can be synchronized. The proposed Lyapunov-Krasovskii functional (LKF) can make full use of system information. By use of an improved integral inequality, some sufficient stability conditions formed by linear matrix inequalities (LMIs) are derived for the synchronization of switched NNs. Average dwell time (ADT) is obtained as a form of inequality that includes the sampling interval. At last, the feasibility of the proposed method is proved by some numerical examples.  相似文献   

20.
This paper is studied with the hierarchical type stability and stabilization of networked control systems (NCSs) with event-triggered mechanism (ETM). In the cause of reducing the amount of data transmission and saving the limited network bandwidth, ETM is introduced into NCSs, and the closed-loop time-delay NCSs model with ETM is presented. An improved Lyapunov–Krasovskii functional (LKF), containing delay-product-type terms and being appropriate for the canonical BesselLegendre inequality (BLI), is first constructed. Then, by utilizing the canonical BLI and the extended reciprocally convex matrix inequality (ERCMI) to deal with the single integral terms of the derivative of LKF, a sufficient condition on asymptotically stable is derived for NCSs. Based on above N-dependent stability criteria, a co-design method is developed, which can be capable of calculating the control gain of controller and the weighting matrix of the ETM. Finally, the feasibility and superiority of the results are verified by two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号