首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper is concerned with the finite-time stabilization for a class of stochastic BAM neural networks with parameter uncertainties. Compared with the previous references, a continuous stabilizator is designed for stabilizing the states of stochastic BAM neural networks in finite time. Based on the finite-time stability theorem of stochastic nonlinear systems, several sufficient conditions are proposed for guaranteeing the finite-time stability of the controlled neural networks in probability. Meanwhile, the gains of the finite-time controller could be designed by solving some linear matrix inequalities. Furthermore, for the stochastic BAM neural networks with uncertain parameters, the problem of robust finite-time stabilization could also be ensured as well. Finally, two numerical examples are given to illustrate the effectiveness of the obtained theoretical results.  相似文献   

2.
In this paper, finite-time synchronization problem is considered for a class of Markovian jump complex networks (MJCNs) with partially unknown transition rates. By constructing the suitable stochastic Lyapunov–Krasovskii functional, using finite-time stability theorem, inequality techniques and the pinning control technique, several sufficient criteria have been proposed to ensure the finite-time synchronization for the MJCNs with or without time delays. Since finite-time synchronization means the optimality in convergence time and has better robustness and disturbance rejection properties, this paper has important theory significance and practical application value. Finally, numerical simulations illustrated by mode jumping from one mode to another according to a Markovian chain with partially unknown transition probability verify the effectiveness of the proposed results.  相似文献   

3.
This paper is concerned with the finite-time and fixed-time synchronization of complex networks with discontinuous nodes dynamics. Firstly, under the framework of Filippov solution, a new theorem of finite-time and fixed-time stability is established for nonlinear systems with discontinuous right-hand sides by using mainly reduction to absurdity. Furthermore, for a class of discontinuous complex networks, a general control law is firstly designed. Under the unified control framework and the same conditions, the considered networks are ensured to achieve finite-time or fixed-time synchronization by only adjusting the value of a key control parameter. Based on the similar discussion, a unified control strategy is also provided to realize respectively asymptotical, exponential and finite-time synchronization of the addressed networks. Finally, the derived theoretical results are supported by an example with numerical simulations.  相似文献   

4.
Finite-time inter-layer projective synchronization (FIPS) of Caputo fractional-order two-layer networks (FTN) based on sliding mode control (SMC) technique is investigated in this article. Firstly, in order to realize the FIPS of FTN, a fractional-order integral sliding mode surface (SMS) is established. Then, through the theory of SMC, we design a sliding mode controller (SMCr) to ensure the appearance of sliding mode motion. According to the fractional Lyapunov direct method, the trajectories of the system are driven to the proposed SMS, and some novel sufficient conditions for FIPS of FTN are derived. Furthermore, as two special cases of FIPS, finite-time inter-layer synchronization and finite-time inter-layer anti-synchronization for the FTN are studied. Finally, this paper takes the fractional-order chaotic Lü’s system and the fractional-order chaotic Chen’s system as the isolated node of the first layer system and the second layer system, respectively. And the numerical simulations are given to demonstrate the feasibility and validity of the proposed theoretical results.  相似文献   

5.
In this paper, we concern the finite-time synchronization problem for delayed dynamical networks via aperiodically intermittent control. Compared with some correspondingly previous results, the intermittent control can be aperiodic which is more general. Moreover, by establishing a new differential inequality and constructing Lyapunov function, several useful criteria are derived analytically to realize finite-time synchronization for delay complex networks. Additionally, as a special case, some sufficient conditions ensuring the finite-time synchronization for a class of coupled neural network are obtained. It is worth noting that the convergence time is carefully discussed and does not depend on control widths or rest widths for the proposed aperiodically intermittent control. Finally, a numerical example is given to demonstrate the validness of the proposed scheme.  相似文献   

6.
This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

7.
In this work, a model-free adaptive sliding mode control (ASMC) methodology is proposed for synchronization of chaotic fractional-order systems (FOSs) with input saturation. Based on the frequency distributed model and the non-integer version of the Lyapunov stability theorem, a model-free ASMC method is designed to overcome the chaotic behavior of the FOSs. The control inputs are free from the nonlinear-linear dynamical terms of the system because of utilizing the boundedness feature of the states of chaotic FOSs. Moreover, a new medical image encryption scheme is tentatively proposed according to our synchronization method, and its effectiveness is verified by numerical simulations. Furthermore, the performance and security analyses are given to confirm the superiority of the proposed encryption scheme, including statistical analysis, key space analysis, differential attack analysis, and time performance analysis.  相似文献   

8.
This paper focuses on the issue of finite-time stability for a general form of nonlinear systems subject to state-dependent delayed impulsive controller. Based on the Lyapunov theory and the impulsive control theory, sufficient conditions for finite-time stability (FTS) and finite-time contractive stability (FTCS) are obtained. Additionally, we apply theoretical results to finite-time synchronization of chaotic systems and design the effective state-dependent delayed impulsive controllers in terms of techniques of linear matrix inequality (LMI). Finally, we present two numerical examples of finite-time synchronization of cellular neural networks and Chua’s circuit to verify the effectiveness of our results.  相似文献   

9.
In this paper, the finite-time synchronization problem of complex dynamic networks with time delay is studied via aperiodically intermittent control. By compared with the existed results concerning aperiodically intermittent control, some new results are obtained to guarantee the synchronization of networks in a finite time. Especially, a new lemma is proposed to reduce the convergence time. In addition, based on aperiodically intermittent control scheme, the essential condition ensuring finite-time synchronization of dynamic networks is also obtained, and the convergence time is closely related to the topological structure of networks and the maximum ratio of the rest width to the aperiodic time span. Finally, a numerical example is provided to verify the validness of the proposed theoretical results.  相似文献   

10.
During the recent years several chaotic image encryption algorithms have been proposed, but most of them encountered some drawbacks such as small key space, low speed, lack of robustness and low security. In this paper, we have proposed an image algorithm based on the combination of a one-dimensional polynomial chaotic map and a piecewise nonlinear chaotic map. Theoretical analysis and computer simulations, both confirm that the new algorithm possesses high security, robust fast encryption speed for practical image encryption and solves the problem of small key space.  相似文献   

11.
《Journal of The Franklin Institute》2022,359(18):10510-10524
This paper investigates the problem of finite-time attack detection for nonlinear complex cyber-physical networks under false data injection (FDI) attacks. Firstly, a Takagi-Sugeno (T-S) fuzzy model is used to approximate nonlinear complex cyber-physical networks in which the measurement channels are injected by FDI attacks. Secondly, based on adding a power integrator technique, a finite-time fuzzy observer is designed to achieve the rapid state observation of complex cyber-physical networks within a finite time by adjusting the observer parameters. Then, an attack detection mechanism consisting of the finite-time fuzzy observer and an attack detector is developed to detect FDI attacks, which can trigger an alarm within a finite time when FDI attacks occur. Finally, simulation results are given to show the effectiveness and superiority of the proposed method.  相似文献   

12.
A finite-time non-fragile state estimation algorithm is discussed in this article for discrete delayed neural networks with sensor failures and randomly occurring sensor nonlinearity. First, by using augmented technology, such system is modeled as a kind of nonlinear stochastic singular delayed system. Then, a finite-time state estimator algorithm is provided to ensure that the singular error dynamic is regular, causal and stochastic finite-time stable. Moreover, the states and sensor failures can be estimated simultaneously. Next, in order to avoid the affection of estimator’s parameter perturbation, a finite-time non-fragile state estimation algorithm is given, and a simulation result demonstrates the usefulness of the proposed approach.  相似文献   

13.
This paper investigates the problem of master-slave synchronization of stochastic quaternion-valued neural networks (SQVNNs) with mixed time-varying delays. A linear feedback controller is developed to explore the global synchronization of the proposed system by utilizing the complete information of the time-delay state. Sufficient conditions for synchronization of the proposed model are derived by constructing appropriate Lyapunov–Krasovskii functional by applying the master-slave synchronization method of master-slave and some integral inequality techniques. Finally, a corresponding numerical simulation is presented to demonstrate the accuracy of the theoretical results. This paper introduces a unique and efficient image encryption algorithm based on SQVNNs. This technique utilizes the solution set of SQVNNs to generate the high-level randomness secret keys to encrypt the source image. Finally, we conclude that the algorithm yields a source image cipher with excellent diffusion and confusion properties. A few test clinical images are utilized to show the validity of the proposed method. Several performance analyses show that the proposed algorithm for image encryption gives an efficient and secure way to deal with the Internet of Health Things (IoHT).  相似文献   

14.
This paper studies the finite-time lag synchronization issue of master-slave complex networks with unknown signal propagation delays by the linear and adaptive error state feedback approaches. The unknown signal propagation delays are fully considered and estimated by adaptive laws. By designing new Lyapunov functional and discontinuous feedback controllers, which involves the estimated error rather than the general synchronization error, sufficient conditions are derived to ensure lag synchronization of the networks within a setting time. It is interesting to discover that the setting time is related to initial values of both the estimated error and the estimated unknown signal propagation delays. Finally, two numerical examples are given to illustrate the effectiveness and correctness of the proposed finite-time lag synchronization criteria.  相似文献   

15.
This paper considers the finite-time synchronization problem for a class of fractional-order complex dynamical networks (FOCDNs). By utilizing the properties of fractional calculus and fractional-order comparison principle, we propose a new lemma. Base on the new lemma, some analysis techniques and algebraic graph theory method, some novel criteria are given to ensure finite-time synchronization of FOCDNs, and the upper bound of the setting time for synchronization is estimated. At last, numerical simulations are given to verify the effectiveness of the obtained results.  相似文献   

16.
This paper is concerned with the observer-based H control for a class of singular Markov jump systems over a finite-time interval, where the transition probability (TP) is time-varying and is limited to a convex hull. Due to the limited capacity of network medium, packet losses are presented in the underlying systems. Firstly, using a stochastic Lyapunov functional, a sufficient condition on singular stochastic H finite-time boundedness for the corresponding closed-loop error systems is provided. Subsequently, a linear matrix inequality (LMI) condition on the existence of the H observer-based controller is developed from a new perspective. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed controller design method, wherein it is shown that the proposed method yields less conservative results than those in the literature.  相似文献   

17.
This paper is concerned with the finite-time stability, boundedness and H control problems for a class of switched stochastic systems. Using the average dwell time method and the multiple Lyapunov-like function technique, some sufficient conditions are proposed to guarantee the finite-time properties for the switched stochastic systems in the form of matrix inequalities. Also, a state feedback controller for the finite-time H control problem is obtained. An example is employed to verify the effectiveness of the proposed method.  相似文献   

18.
《Journal of The Franklin Institute》2022,359(18):10602-10627
This paper considers the finite-time distributed economic dispatch problem in smart grids: the power generated by individual generators are designed to satisfy a certain demand while minimizing the total generation cost in a distributed manner, which guarantees the convergence in finite time. The proposed method facilitates the solution of real time power dispatch problems. First, a class of distributed economic dispatch algorithm is proposed to achieve the optimal solution in finite-time with and without capacity limitations. Second, in order to reduce the information exchange requirements, a distributed, asynchronous event-triggered communication scheme is established which is free of Zeno with guaranteed finite-time convergence. Furthermore, both proposed algorithms are robust to the time-varying communication networks. Simulation results illustrate the effectiveness and scalability of the distributed algorithms.  相似文献   

19.
This paper considers the mean-square pinning control problem of fractional stochastic discrete-time complex networks. First, a new fractional stochastic discrete-time complex networks model with stochastic noise is established. Then, some pinning controllers and sufficient conditions are developed for the complex networks. By adopting Lyapunov energy function theory and matrix analysis theory, it proved that the synchronization of the fractional stochastic discrete-time complex networks can be achieved in a mean-square sense via pinning control. In addition, these results are extended to solve the synchronization problem of general fractional discrete-time complex networks without noise. Finally, several numerical examples are given to verify the correctness of the obtained theoretical results.  相似文献   

20.
This paper investigates a stochastic impulsive coupling protocol for synchronization of linear dynamical networks based on discrete-time sampled-data. The convergence of the networks under the proposed protocol is discussed, and some sufficient conditions are showed to guarantee almost sure exponential synchronization. Moreover, this coupling protocol with a pinning control scheme is developed to lead the state of all nodes to almost sure exponentially converge to a virtual synchronization target. It is shown that the almost sure exponential synchronization can be achieved by only interacting based on the stochastic feedback information at discrete-time instants. Some numerical examples are finally provided to present the effectiveness of the proposed stochastic coupling protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号