首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper concerns the problem of designing a robust observer-based modified repetitive-control system with a prescribed H disturbance rejection level for a class of strictly proper linear plants with unknown aperiodic disturbances and time-varying structural uncertainties. A correction to the amount of the delay in the repetitive controller is introduced that leads to a significant improvement in tracking performance. An integrated performance index is defined to quantify the overall effect of rejecting the aperiodic disturbances and tracking the periodic reference input. A Lyapunov functional with two tuning parameters is used to derive a linear-matrix-inequality based robust stability condition for the system with a prescribed disturbance-rejection bound. Combining the performance indices, an optimization algorithm that searches for the best combination of state-observer gain and the feedback control gains is developed. A numerical example illustrates the design procedure and demonstrates the effectiveness of the method.  相似文献   

2.
3.
4.
We investigate the input–output decoupling problem of switched Boolean control networks (SBCNs) in this paper. Based on the matrix expression of Boolean functions, the dynamics of SBCNs are converted into an algebraic form via semi-tensor product of matrices first. Then, using the redundant variable separation technique, we give the necessary and sufficient conditions for the existence of three kinds of controllers to detect whether an SBCN can be input–output decomposed or not, respectively, including the open-loop controllers, the state feedback controllers, and the output feedback controllers. Meanwhile, a constructive procedure is presented to construct the open-loop controllers, as well as the state feedback controllers and output feedback controllers. Finally, an illustrative example is given to show that the new results obtained are effective.  相似文献   

5.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

6.
In this paper, we consider the H hybrid dynamical output-feedback control problem for discrete-time switched linear systems under asynchronous switching. A time-varying multiple Lyapunov-like-function (MLF) approach is applied to derive sufficient conditions that guarantee the stability and weighted l2-gain performance of the closed-loop systems, where the established conditions explicitly depend on the upper and lower bounds of asynchronous switching delays. An alternative approach is proposed to decouple the bilinear problems of the control synthesis conditions. Convex optimization algorithms are also proposed based on the established conditions to determine the minimum l2-gain performance. Two numerical examples are provided to illustrate the effectiveness of the proposed method, demonstrating significant improvement over the existing results.  相似文献   

7.
This paper discusses the problem of H finite time control for a discrete time-varying system with interval time-varying delay. By constructing a new augmented time-varying Lyapunov functional involving triple summation items and using discrete Wirtinger-type inequalities, delay-dependent conditions are derived, which guarantee that the closed-loop system is not only finite time bounded (FTB) but also satisfies an H performance. Furthermore, the time-varying feedback controller can be derived by solving a series of recursive linear matrix inequalities (RLMIs). Simulation results show the effectiveness and superiority of the proposed method.  相似文献   

8.
9.
10.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

11.
This paper researches the finite-time event-triggered containment control problem of multiple Euler–Lagrange systems (ELSs) with unknown control coefficients. To realize an accurate convergence time, the settling-time performance function is employed to ensures the steady-state and dynamic properties of the containment errors in the resulting system. Meanwhile, to handle unknown control coefficients, adaptive neural networks (ANNs) with an additional saturated term are designed, which removes the requirement of full rank control coefficients in traditional control methods. By establishing an event-triggered mechanism, a novel finite-time event-triggered containment control law is designed, which yields the semi-global practical finite-time stable (SGPFS) of the resulting closed-loop system without Zeno phenomenon according to the finite-time stability criterion. The effectiveness of the designed methodology is verified by simulation.  相似文献   

12.
A novel adaptive control with σ-modification for uncertain nonlinear systems is proposed in the paper. The application of conventional adaptive control is severely limited by the problems of construction of Lyapunov function and parameter drift because of non-parametric uncertainties. The proposed adaptive control that is on the basis of the immersion and invariance theory and σ-modification can be used to deal with these problems to some extent. It turns out to be a structured design method without requiring a Lyapunov function in the design level and robust to non-parametric uncertainties. Moreover, constrained command filter backstepping is adopted to meet the amplitude and rate constraints on the states and actuators. The uniformly ultimately bounded stability of the closed-loop system has been analyzed by Lyapunov theory with parametric and non-parametric uncertainties of the controlled model. To demonstrate the design flexibility, the method is applied to the position tracking control system design of a mass-damper-spring system and the flight control system design of a scramjet-powered air-breathing hypersonic vehicle. Finally, the effectiveness of the proposed adaptive control method is illustrated by numerical simulations.  相似文献   

13.
Coordinated by the CAS Institute of Hydrobiology (IHB) in Wuhan, a research consortium has completed a key project on remediation of polluted  相似文献   

14.
15.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

16.
The decentralized tracking control methods for large-scale nonlinear systems are investigated in this paper. A backstepping-based robust decentralized adaptive neural H tracking control method is addressed for a class of large-scale strict feedback nonlinear systems with uncertain disturbances. Under the condition that the nonlinear interconnection functions in subsystems are unknown and mismatched, the decentralized adaptive neural network H tracking controllers are designed based on backstepping technology. Neural networks are used to approximate the packaged multinomial including the unknown interconnections and nonlinear functions in the subsystems as well as the derivatives of the virtual controls. The effect of external disturbances and approximation errors is attenuated by H tracking performance. Whether the external disturbances occur or not, the output tracking errors of the close-loop system are guaranteed to be bounded. A practical example is provided to show the effectiveness of the proposed control approach.  相似文献   

17.
In this paper, the simultaneous H stabilization problem is investigated for a physically interconnected large-scale system which works in multiple operation modes. A distributed wireless networked control framework is introduced, in which the distributed dynamic output feedback controllers not only use the local measurements, but also receive the neighboring controllers’ broadcasts via wireless networks. The channel fading in wireless communications is described as the Rice fading model. Our focus is on the design of the distributed controllers such that the large-scale system is mean-square stable in each operation mode and achieves a prescribed H disturbance attenuation level. By employing the Lyapunov functional method and related stochastic analysis techniques, a sufficient condition on the existence of desired controllers is presented, and the parameterization of the controller gains is derived. Finally, a numerical example is utilized to illustrate the feasibility of the proposed scheme.  相似文献   

18.
This study investigates the problem of robust tracking control for interconnected nonlinear systems affected by uncertainties and external disturbances. The designed H dynamic output-feedback model reference tracking controller is parameterized in terms of linear matrix inequalities (LMIs), which is formulated within a convex optimization problem readily implementable. The resolution of such a problem, guarantying not only the quadratic stability but also a prescribed performance level of the resulting closed-loop system, enables to calculate concurrently the robust decentralized control and observation gain matrices. The established LMI conditions are computed in a single-step resolution to obtain all the controller/observer parameters and therefore to overcome the problem of iterative algorithm based on a multi-stage resolution leading in most cases to conservative and suboptimal solutions. Numerical simulations on diverse applications ranging from a numerical academic example to coupled inverted double pendulums and a 3-strongly interconnected machine power system are provided to corroborate the merit of the proposed control scheme.  相似文献   

19.
This paper simultaneously addresses the parameter/state uncertainties, external disturbances, input saturations, and actuator faults in the handling and stability control for four-wheel independently actuated (FWIA) electric ground vehicles (EGVs). Considering the high cost of the available sensors for vehicle lateral velocity measurement, a robust H dynamic output-feedback controller is designed to control the vehicle motion without using the lateral velocity information. The investigated parameter/state uncertainties include the tire cornering stiffness, vehicle mass, and vehicle longitudinal velocity. The unmodeled terms in the vehicle lateral dynamics model are dealt as the external disturbances. Faults of the active steering system and in-wheel motors can cause dangerous consequences for driving, and are considered in the control design. Input saturation issues for the tire forces can deteriorate the control effects, and are handled by the proposed strategy. Integrated control with active front steering (AFS) and direct yaw moment (DYC) is adopted to control the vehicle yaw rate and sideslip angle simultaneously. Simulation results based on a high-fidelity and full-car model via CarSim-Simulink show the effectiveness of the proposed control approach.  相似文献   

20.
This paper is concerned with reliable H?control for saturated linear Markov jump systems with uncertain transition rates and asynchronous jumped actuator failure. The actuator failures are assumed to occur randomly under the Markov process with a different jumping mode from the system jumping mode. In considering the mixed-mode-dependent state feedback controller, both H stochastic stability analysis for closed-loop system with completely accessible transition rates and uncertain transition rates are investigated. Moreover, based on the obtained stability conditions, the H?control problems are investigated, and the controller gains can be obtained by solving a convex optimization problem with minimizing H performance as objective and linear matrix inequalities (LMIs) as constraints. The problem of designing state feedback controllers such that the estimate of the domain of attraction is enlarged is also formulated and solved as an optimization problem with LMI constraints. Simulation results are presented to illustrate the effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号