首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

2.
3.
The Radboud University Medical Center has a problem‐based, learner‐oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students’ decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of anatomical knowledge gained during the first year of medical school among second‐year medical students was assessed. In May 2011, 346 medical students applied for the second‐year gastro‐intestinal (GI) tract course. The students were asked to participate in a reexamination of a selection of anatomical questions of an examination from October 2009. The examination consisted of a clinical anatomy case scenario and two computed tomography (CT) images of thorax and abdomen in an extended matching format. A total of 165 students were included for analysis. In 2011, students scored significantly lower for the anatomy examination compared to 2009 with a decline in overall examination score of 14.7% (±11.7%). Decrease in knowledge was higher in the radiological questions, compared to the clinical anatomy cases 17.5% (±13.6%) vs. 7.9% (±10.0%), respectively, d = 5.17. In both years, male students scored slightly better compared to female students, and decline of knowledge seems somewhat lower in male students (13.1% (±11.1%) vs. 15.5% (±12.0%), respectively), d = ?0.21. Anatomical knowledge in the problem‐oriented horizontal and vertical integrated medical curriculum, declined by approximately 15% 1.5 year after the initial anatomy course. The loss of knowledge in the present study is relative small compared to previous studies. Anat Sci Educ 10: 242–248. © 2016 American Association of Anatomists.  相似文献   

4.
Clinically integrated curricula in health science education has been shown to promote the development of problem-solving schema and positively impact knowledge acquisition. Despite its’ purported benefits, this type of curricula can impose a high cognitive load, which may negatively impact novice learners’ knowledge acquisition and problem-solving schema development. Introducing explicit clinical reasoning instruction within pre-professional undergraduate basic science courses may limit factors that increase cognitive load, enhance knowledge acquisition, and foster developing clinical problem-solving skills. This study, conducted over the Fall and Spring semesters of the 2018–2019 school year, sought to evaluate whether the implementation of a clinical reasoning instructional intervention within a clinically integrated pre-professional undergraduate general human anatomy course influenced students’ acquisition of anatomical knowledge and development of clinical problem-solving skills. Results of the study were mixed regarding the acquisition of anatomical knowledge. Both the intervention and comparison groups performed similarly on multiple choice examinations of anatomical knowledge. However, the clinical reasoning intervention positively impacted students’ ability to apply clinical reasoning skills to anatomically based clinical case studies. Results from M\mixed between-within subjects analysis of variance comparing scores on Written Clinical Reasoning Assessments revealed a significant interaction between time and group affiliation, with the groups receiving the interventions outperforming the comparison groups: Fall, P < 0.001; Spring, P < 0.001. The results of this study may imply that explicit clinical reasoning instruction within a clinically integrated undergraduate Human Anatomy course could hold potential for fostering students’ early clinical reasoning skills.  相似文献   

5.
Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third‐year medical students completed a 20–25‐question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first‐year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. Anat Sci Educ 7: 461–468. © 2014 American Association of Anatomists.  相似文献   

6.
The evolution in undergraduate medical school curricula has significantly impacted anatomy education. This study investigated the perceived role of clinical anatomy and evaluated perceptions of medical students' ability to apply anatomical knowledge in the clinic. The aim of this study was to develop a framework to enhance anatomical educational initiatives. Unlike previous work, multiple stakeholders (clinicians, medical students, and academic anatomists) in anatomy education were evaluated. Participants completed an eleven-point Likert scale survey written by the investigators. Responses from both clinical educators and medical students at Penn State Milton S. Hershey Medical Center and College of Medicine suggest that medical students are perceived as ill-prepared to transfer anatomy to the clinic. Although some areas of patient management differ in relevancy to anatomical education, there are areas of clinical care which were uniformly ranked as relying heavily on anatomical knowledge (imaging and diagnostic studies, physical examination, and arrival at correct diagnosis) by a variety of clinical specialists. Our results suggest a need for advanced anatomy courses to be taught coincidental with medical students' clinical education. Development of these courses would optimally rely on input from both clinicians and academic anatomists, as both cohorts rated clinical anatomy similarly (P ≥ 0.05). Additionally, we hypothesize that preclinical students' application of anatomy would be enhanced if clinical context was derived from areas of clinical care which rely heavily on anatomy, whereas courses designed for advanced medical students will benefit from anatomical context focused on specialty specific aspects of clinical care identified in this study.  相似文献   

7.
Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science‐dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi‐specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. Anat Sci Educ 7: 379–388. © 2014 American Association of Anatomists.  相似文献   

8.
Interprofessional collaboration (IPC) in the medical field is an important factor for good clinical outcomes and should be taught as early as in undergraduate medical education. Since implementing IPC training is an organizational challenge, students are often limited in their opportunities to experience real-life IPC. Therefore, an approach where students observe successful IPC activities of role models in an applied anatomical format was proposed. It was studied whether observing IPC activities in undergraduate anatomical education has an impact on both students' attitude toward IPC and on knowledge acquisition. Further, it was examined whether the attitudes and knowledge of students from different medical disciplines were influenced in different ways. Therefore, 75 medical students and thirty-eight physiotherapy students participated in a study with the task of observing a live broadcast of an interprofessional teaching session. Participants were asked about their attitudes toward interprofessional learning, their evaluation of professional responsibilities, and their profession-specific knowledge before and after observing the IPC session. The participants' attitude toward interprofessional learning improved for both groups of students. Moreover, students of physiotherapy adjusted their evaluation of their own and others' professional responsibilities after observing IPC. In both student groups, knowledge increased, in particular, with respect to the field of knowledge in other professions. So, observing IPC can modify students' attitudes and support knowledge acquisition. The implementation of IPC observations provides students from various healthcare disciplines with a clearer impression of professionals' responsibilities and gives learners the opportunity to acquire knowledge from healthcare fields unfamiliar to them.  相似文献   

9.
Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives: for the student to successfully gain a solid knowledge base of human anatomy and to develop and hone clinical reasoning skills. In a basic anatomy course, clinical case discussions based on underlying anatomic anomalies or abnormalities are the major means to teach students clinical reasoning skills. By identifying, classifying, and analyzing the clinical data given, a student learns to methodically approach a clinical case and formulate plausible diagnoses. Practicing and perfecting clinical problem‐solving skills should be a major objective of the anatomy curriculum. Such clinical reasoning skills are indeed crucial for the successful and expert practice of medicine. Anat Sci Ed 1:267–268, 2008. © 2008 American Association of Anatomists.  相似文献   

10.
11.
Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point‐of‐care imaging in the future. To investigate whether using short sessions of in vivo imaging using ultrasonography could benefit students' anatomical knowledge and clinical application, we conducted a 2‐hour session on abdominal anatomy using ultrasonography in small groups of five to six students, for both first‐ and second‐year student cohorts. Individual feedback was collected to assess student perceptions. To measure retention and understanding, a short examination containing ultrasound images and questions and performance of a clinical skill (gastrointestinal' tract examination) were assessed. Ultrasonography sessions were highly valued by the students, with 90% of the students reporting their understanding was improved, and over 70% reporting increased confidence in their anatomical knowledge. However, the assessments showed no appreciable impact on skills or understanding related to abdominal anatomy and examination. We conclude that the risk associated with limited exposure increasing confidence without increasing skills remains real and that in vivo imaging is not effective when used as a short adjunct teaching tool. The widespread use of ultrasonography means finding the best way to incorporate ultrasound into medical education remains important. To this end, we are currently implementing an extended program including echocardiography and multiple anatomical sessions that will determine if frequency and repetition of use can positively impact on student performance and understanding. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

12.
The ability to deliver sufficient core anatomical knowledge and understanding to medical students with limited time and resources remains a major challenge for anatomy educators. Here, we report the results of switching from a primarily didactic method of teaching to supported self-directed learning for students studying anatomy as part of undergraduate medicine at the University of Edinburgh. The supported self-directed approach we have developed makes use of an integrated range of resources, including formal lectures and practical sessions (incorporating gross anatomy specimens, medical imaging technologies, anatomical models, clinical scenarios, and surface anatomy workstations). In practical sessions, students are provided with a custom-made workbook that guides them through each session, with academic staff, postgraduate tutors, and near-peer teaching assistants present to deal with misunderstandings and explain more complicated topics. This approach retains many of the best attributes of didactic teaching but blends them with the advantages associated with self-directed learning approaches. The switch to supported self-directed learning-initially introduced in 2005-resulted in a significant improvement in anatomy examination scores over the subsequent period of five years, manifesting as an increase in the average anatomy practical spot examination mark, less students failing to obtain the pass mark and more students passing with distinction. We conclude that the introduction of supported self-directed learning improved students' engagement, leading to deeper learning and better understanding and knowledge of anatomy.  相似文献   

13.
It is essential for dental hygienists to have basic knowledge of gross anatomy to provide efficient treatment. However, gross anatomy course is relatively neglected due to their disparity from actual clinical dental practice. This study aimed to propose an effective dental hygiene gross anatomy curriculum that reflects the opinions of professional clinical dental hygienists. The study had an online-based cross-sectional design and the survey was distributed to clinical dental hygienists via social networks (n = 200). The questionnaire consisted of questions on the utilization of anatomical knowledge in clinical practice, opinions on the contents and methods of gross anatomy education, and general characteristics. The present study found that 186 (93%) used anatomical knowledge at an above-average level. Qualitative analysis indicated that dental implant surgery, radiography, and extraction were the clinical procedures that required the most anatomical knowledge. The clinical dental hygienists answered that the most-necessary knowledge is that of the mandibular nerve, followed by that on the temporomandibular joint, mandible, maxilla, maxillary nerve, and masticatory muscle. The methods proposed to improve gross anatomy education were (in decreasing order of importance) using videos or photographs (X-rays, CT, MRI, etc.), integrating education with clinical subjects, and using a three-dimensional visualization program. Higher education levels of respondents have increased their tendency to believe that the contents and methods of the presented education were necessary. Dental hygienists who utilized anatomical knowledge more often tended to be had a greater appreciation of the necessity of all educational contents and methods.  相似文献   

14.
Basic and superior reasoning skills are woven into the clinical reasoning process just as they are used to solve any problem. As clinical reasoning is the central competence of medical education, development of these reasoning skills should occur throughout the undergraduate medical curriculum. The authors describe here a method of teaching reasoning skills in a clinical context during a human anatomy course. Anat Sci Educ 3:267–271, 2010. © 2010 American Association of Anatomists.  相似文献   

15.
Assessing teaching‐learning outcomes in anatomical knowledge is a complex task that requires the evaluation of multiple domains: theoretical, practical, and clinical knowledge. In general, theoretical knowledge is tested by a written examination system constituted by multiple choice questions (MCQs) and/or short answer questions (SAQ). The assessment of practical knowledge (three‐dimensional anatomical concepts) involves oral, spot, or objective structured practical examinations (OSPE). Finally, the application of anatomical knowledge to patients is tested mainly through objective structured clinical examinations (OSCE). The major focus of this study is the OSPE. Although many schools challenge students using this tool in practical examinations in the early phase of the curriculum, the true meaning of OSPE is frequently forgotten and it becomes, in reality, a spot examination. This article, for the first time, describes how the concept of the OSPE has evolved and is currently being used to assess the practical domain of anatomical knowledge in a problem‐based curriculum at Alfaisal University College of Medicine. In addition, it describes the main differences from the spot examination, which is normally used in traditional medical curricula. The authors believe that the OSPE remains the most efficient tool to assess the practical aspects of anatomical knowledge in a system where basic knowledge is integrated with the clinical or functional part of anatomy. However, this contention only holds true if the OSPE process revolves around structured objectives. Anat Sci Educ 6: 125–133. © 2012 American Association of Anatomists.  相似文献   

16.
Advanced postgraduate medical education for health-care professionals is constantly evolving. Understanding facial anatomy and especially its vascular system is crucial when performing soft tissue filler injections to avoid adverse events including tissue loss or irreversible blindness. Standard anatomical resources often fall short of elucidating clinically relevant concepts in more highly specialized areas of interest. A novel dissection approach for demonstrating the anatomy of the lateral orbit was presented at scientific meetings to participants from dermatology, plastic surgery, and general practice. Results from the post-course online survey (n = 52) were analyzed. The results of the survey reveal a high educational impact and a high clinical relevance of the novel dissection approach. In addition, the majority of respondents (97.7%; n = 51) felt that the exposed anatomical structure of the orbit and face improved their ability to safely perform cosmetic procedures on the face. More experienced respondents who had previously attended at least five cadaveric dissections were more likely to strongly agree that reviewing anatomy through this novel dissection approach increased their confidence in avoiding periorbital vascular danger zones. As minimally invasive outpatient procedures continue to evolve, practicing physicians and mid-level providers often face the challenge of having to reconcile preexisting anatomical knowledge with new clinical practice. Skills required to navigate high impact anatomy include visualization of structures that form the navigational landscape and avoidance of key danger zones. The novel dissection approach to the lateral orbit reflects the increasing focus on revisiting, reforming, and redesigning anatomy for continuing professional development activities.  相似文献   

17.
Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate students uniformly perceived deficiencies in their anatomical knowledge when they started clinical training regardless of their school's didactic approach. A study assessing students' actual knowledge of clinical anatomy revealed no relationship between students' knowledge and the school's didactic approach. Test failure rates based on absolute standards set by different groups of experts were indicative of unsatisfactory levels of anatomical knowledge, although standards differed markedly between the groups of experts. Good test performance by students seems to be related to total teaching time for anatomy, teaching in clinical context, and revisiting anatomy topics in the course of the curriculum. These factors appeared to outweigh the effects of disciplinary integration orwhether the curriculum was problem‐based or traditional. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

18.
In anatomical education three-dimensional (3D) visualization technology allows for active and stereoscopic exploration of anatomy and can easily be adopted into medical curricula along with traditional 3D teaching methods. However, most often knowledge is still assessed with two-dimensional (2D) paper-and-pencil tests. To address the growing misalignment between learning and assessment, this viewpoint commentary highlights the development of a virtual 3D assessment scenario and perspectives from students and teachers on the use of this assessment tool: a 10-minute session of anatomical knowledge assessment with real-time interaction between assessor and examinee, both wearing a HoloLens and sharing the same stereoscopic 3D augmented reality model. Additionally, recommendations for future directions, including implementation, validation, logistic challenges, and cost-effectiveness, are provided. Continued collaboration between developers, researchers, teachers, and students is critical to advancing these processes.  相似文献   

19.
Anatomical science is a fundamental element of undergraduate medical education; thus, it is imperative that the course serves future medical professionals when entering clinical practice. However, anatomical education has faced challenges in recent years including decreased allocated time, increased class sizes and over-stretched staff. Technological advancements in anatomical education may provide relief to these issues. Therefore, exploring clinicians' perspective on the clinical relevance and efficacy of anatomical education, within an African context, can inform its future. This study used a qualitative research approach within an interpretive paradigm. Eight semi-structured one-on-one interviews were conducted with clinicians associated with Stellenbosch University and Tygerberg Hospital. Thematic analysis was employed to analyze the data, creating themes and codes. Trust worthiness of the data was ensured through peer debriefing and member checking. Results reveal that clinicians find clinically relevant anatomy valuable to students. However, some feel that this is not delivered effectively at present. Clinicians see potential for the incorporation of clinical technologies into anatomical pedagogy. Although clinicians are hopeful for new technological developments in anatomical education, concerns were reported about its autonomous nature. This study concludes that although clinically relevant anatomical education is beneficial to students, the time and the resources via which it is delivered should be considered. There is optimism for the future of anatomical education with the advancements of technologically based educational resources, however, new resources should be incorporated with planning and supervision.  相似文献   

20.
Scientific research and student involvement are critical to the formation of physicians, yet the number of medical researchers has decreased over time. To implement corrective strategies, the variables associated with positive research attitudes and productivity among medical students must be identified. The aim of this study was to evaluate the variables associated with students interested or involved in research. A validated questionnaire was applied to the student members of an established anatomy research group in a Mexican medical school with a six-year medical program. Data were collected and analyzed. A total of 85.5% (n = 77/90) students answered the survey with most respondents being second-year medical students. The majority of respondents indicated that the important component of conducting research was a contribution to the new knowledge (45.5%) and to the scientific community (42.9%). More than half of respondents mentioned a professor or a peer as the initial motivation to become involved in research. Lack of time was the main limitation (59.7%) to research involvement. Perceived benefits were knowledge and team work skills. Of those involved, most (85.7%) wished to continue participating in research as a complement to their clinical work. Professors and student colleagues were found to play an important motivational and recruitment role for medical research. These efforts in turn have developed into long-lasting mentor-mentee relationships. Students also anticipated that early involvement in research will positively influence the likelihood of future physicians' contribution and collaboration in research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号