首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

2.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

3.
Few realized the extent of disruption that the Covid-19 global pandemic would impose upon higher anatomical education. While many institutions were obliged to adopt a fully-remote online model, the New York Institute of Technology College of Osteopathic Medicine strove to develop a curriculum that would allow medical students to receive an in-person anatomy education. A hybrid model that emphasized learning from prosected cadavers and self-study stations was implemented, with the remainder of the students' time directed toward studying at home. Through an anonymous survey aimed at gleaning student satisfaction, this study demonstrates that this hybrid prosection-based anatomy course aligned with student preferences both assuming no health risk (64.6% agreed) and given the current risk of contracting Covid-19 (78.5% agreed). Generally, students felt that their education was equal to that of previous years (Likert scale = 3.24 ± 1.05), fostered an appreciation for anatomy (4.56 ± 0.59), promoted teamwork (4.13 ± 0.85), and prepared them for practical examinations (4.18 ± 0.74). Linear mixed-effect models demonstrated that specific differences in results could be attributed to students' preconceived preferences toward student-led dissections and to past medical training. Importantly, most students “disagree” (1.97 ± 1.00) that they were concerned about the risk of exposure to Covid-19 during in-person anatomy laboratory sessions. Areas requiring improvement were identified by the model, including the provision of access to the cadavers outside of the regularly scheduled laboratory times (3.89 ± 1.08). These findings should be utilized when designing future gross anatomy courses in response to the “new normal”.  相似文献   

4.
Innovative reforms in medical education will require instructional tools to support these changes and to give students more flexibility in where and how they learn. At Colorado State University, the software program Virtual Canine Anatomy (VCA) was developed to assist student learning both inside and outside the anatomical laboratory. The program includes interactive anatomical photographs of dissected canine cadavers, dissection instructions with accompanying videos and diagrams, radiographs, and three-dimensional models. There is a need to evaluate the effectiveness of instructional tools like VCA so that decisions on pedagogical delivery can be evidence-based. To measure the impact of VCA on student outcomes in a dissection laboratory, this study compared student attitudes, quiz scores, dissection quality and accuracy, and instructor reliance between students with and without access to VCA. Students with VCA needed less time with teaching assistants (P < 0.01), asked teaching assistants fewer questions (P = 0.04), felt that the dissection was easier (P = 0.02), and were in stronger agreement that they had access to adequate resources (P = 0.02). No differences were found in the dissection quality or accuracy, quiz scores, or attitudes regarding overall enjoyment of the activity between the two groups. This study shows that VCA increases student independence and can be used to enhance anatomical instruction.  相似文献   

5.
The professional behavior of future doctors is increasingly important in medical education. One of the first subjects in the curriculum to address this issue is gross anatomy. The Tuebingen Medical Faculty implemented a learning portfolio and a seminar on medical professionalism during the dissection course. The aims of this research project are to get an overview of how students form a professional identity in the dissection course and to compare the content of both their oral and written reflections on the course. A qualitative analysis was conducted of the oral and written reflections on the dissection laboratory experience. This study was conducted during winter term 2013/2014 with a cohort of 163 participants in the regular dissection course. Written reflection texts (from n = 96 students) and audio recordings from four oral reflection seminar discussions (with n = 11 students) were transcribed and deductively categorized with Mayring’s qualitative content analysis method. Both qualitative analyses show that students reflected on many topics relevant to professional development, including empathy, respect, altruism, compassion, teamwork, and self-regulation. Quantitative analysis reveals that students who attended the oral reflection wrote significantly more in their written reflection than students who did not. There is, however, no difference in the reflection categories. Reflection content from students corresponds with categories derived from existing competency frameworks. Both the seminar (oral reflections) and the learning portfolio (written reflections) present excellent opportunities to foster professional development during anatomy education; the key is using them in conjunction with the dissection course.  相似文献   

6.
Gross anatomy dissection in contemporary medical education must balance the traditional value of learning from the cadaver with the possibilities created by the use of digital tools as supplemental resources that personalize and deepen the student learning experience. This study broadly examined the design, implementation, and use of AnatomyShare, a novel iPad application employing learner-generated content that allows students to securely share annotated images of their dissections with each other and take faculty-generated image-based quizzes during their first-year medical school gross anatomy course. Almost all students enrolled in the course used the application (N = 176; 91% use based on analytics). Seventy-five students responded to a survey asking how and when they used the application, along with their perceptions of its usefulness and contribution to learning. More students reported using the application outside of laboratory (97.3%) than during laboratory (85.3%), despite only in-laboratory use being required. Taking quizzes using the “Exam” feature was the highest rated use of AnatomyShare, and students cited that the application exposed them to anatomical variation and motivated them to correctly identify structures during dissection. While steps need to be taken to combat low-quality learner-generated content and to enhance meaningful student interaction and collaboration, AnatomyShare was a feasible and highly rated supplement to dissection that provided valuable assessment opportunities for students. Future research will examine the impact of use on course grades and engagement in gross anatomy dissection.  相似文献   

7.
While debate about the use of—and alternatives to—human cadaveric dissection in medical training is robust, little attention has been paid to questions about timing. This study explores the perspectives of medical students and recent graduates with regard to two key questions: when in the degree program do students prefer dissection opportunities and what are the students getting out of participating in dissection? Self-report survey data from students in preclinical years (n = 105), clinical years (n = 57), and graduates (n = 13) were analyzed. Most (89%) preferred dissection during the preclinical years, with no effect by training year (χ2 = 1.98, p = 0.16), previous anatomy (χ2 = 3.64, p = 0.31), or dissection (χ2 = 3.84, p = 0.26) experience. Three key findings emerged. First, the majority of students prefer to dissect in the preclinical years because they view dissection as important for developing foundation knowledge and delivering an opportunity for consolidation prior to transitioning to primarily clinical studies. In addition, students recognize that it is a time-consuming activity requiring specialized facilities. Second, three main understandings of the purpose of dissection were reported: depth of learning, learning experience, and real-world equivalence. Third, these student perspectives of the purpose of dissection are associated with timing preferences for dissection opportunities. The results identify the preclinical phase as the optimal time to strategically integrate dissection into medical training in order to maximize the benefits of this unique learning opportunity for students and minimize its impact upon curricular time.  相似文献   

8.
In early 2020, the Covid-19 crisis forced medical institutions worldwide to convert quickly to online platforms for content delivery. Although many components of medical education were adaptable to that format, anatomical dissection laboratory lost substantial content in that conversion, including features of active student participation, three-dimensional spatial relationships of structures, and the perception of texture, variation, and scale. The present study aimed to develop and assess online anatomy laboratory sessions that sought to preserve benefits of the dissection experience for first-year medical students. The online teaching package was based on a novel form of active videography that emulates eye movement patterns that occur during processes of visual identification, scene analysis, and learning. Using this video-image library of dissected materials, content was presented through asynchronous narrated laboratory demonstrations and synchronous/active video conference sessions and included a novel, video-based assessment tool. Data were obtained using summative assessments and a final course evaluation. Test scores for the online practical examination were significantly improved over those for previous in-person dissection-based examinations, as evidenced by several measures of performance (Mean: 2015–2019: 82.5%; 2020: 94.9%; P = 0.003). Concurrently, didactic test scores were slightly, but not significantly, improved (Mean: 2015–2019: 88.0%; 2020: 89.9%). Student evaluations of online sessions and overall course were highly positive. Results indicated that this innovative online teaching package can provide an effective alternative when in-person dissection laboratory is unavailable. Although this approach consumed considerable faculty time for video editing, further development will include video conference breakout rooms to emulate dissection small-group teamwork.  相似文献   

9.
Augmented reality (AR) has recently been utilized as an integrative teaching tool in medical curricula given its ability to view virtual objects while interacting with the physical environment. The evidence for AR in medical training, however, is limited. For this reason, the purpose of this mixed method study was to evaluate the implementation of overlaying donor-specific diagnostic imaging (DSDI) onto corresponding body donors in a fourth-year, dissection-based, medical elective course entitled anatomy for surgeons (AFS). Students registered in AFS course were separated into groups, receiving either DSDI displayed on Microsoft HoloLens AR head-mounted display (n = 12) or DSDI displayed on iPad (n = 15). To test for the change in spatial ability, students completed an anatomical mental rotation test (AMRT) prior to and following the AFS course. Students also participated in a focus group discussion and completed a survey at the end of AFS, analyzed through thematic triangulation and an unpaired, Mann Whitney U test respectively, both addressing dissection experience, DSDI relevancy to dissection, and use of AR in anatomical education. Although statistically significant differences were not found when comparing student group AMRT scores, survey and discussion data suggest that the HoloLens had improved the students' understanding of, and their spatial orientation of, anatomical relationships. Trunk dissection quality grades were significantly higher with students using the HoloLens. Although students mentioned difficulties with HoloLens software, with faculty assistance, training, and enhanced software development, there is potential for this AR tool to contribute to improved dissection quality and an immersive learning experience.  相似文献   

10.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

11.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

12.
Three-dimensional virtual technology (3DVT) educational tools and peer-tutoring have proven to be effective teaching strategies in improving student learning outcomes. The purpose of this study was threefold: (1) compare the anatomy academic performance between underrepresented minority (URM) and non-minority (non-URM) students, (2) compare the voluntary use of 3DVT dissection videos and peer-mentoring between these two cohorts, and (3) estimate the association between the use of these teaching strategies on anatomy examinations and course grades at a school of physical therapy. Three-dimensional virtual technology narrated dissection videos and peer-mentoring were made available to all students. Time accessing the video and attending peer-mentoring sessions was measured throughout the course for all students. Three practical and four written examinations and the final course grade were calculated. Numerous one-way ANOVAs were used to compare examination/course grades between student cohorts (URM and non-URM) and usage of the two educational strategies (3DVT and peer-mentoring). Multiple linear regressions were performed with teaching strategies as predictors and grades as outcomes. Underrepresented minority students demonstrated significantly lower practical examination scores (P = 0.04), lower final course grades (P = 0.01), and a greater use of mentorship hours (P = 0.001) compared to non-URM. The regression models with both predictors (3DVT and peer-mentoring) combined demonstrated the greatest association with grades for both URM and non-URM. For both groups of students, the association between predictors and practical examination scores, although fair, was not statistically significant. Peer-mentoring seems to be the most effective teaching strategy in helping URM students succeed in anatomy.  相似文献   

13.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

14.
The gross anatomy dissection course is considered to be one of the most important subjects in medical school. Advancing technology facilitates the production of e-learning material that can improve the learning of topographic anatomy during the course. The purpose of this study was to examine a locally produced audiovisual dissection manual's effects on performance in dissection, formal knowledge gained, motivation, emotions, learning behavior, and learning efficiency of the medical students. The results, combined with the total effort put into the production of the manual, should support decisions on further implementation of this kind of audiovisual e-learning resource into the university's curriculum. First-year medical students (n = 279) were randomly divided into three groups for two weeks within the regular dissection course hours during the dissection of the anterior and posterior triangles of the neck. Two groups received an audiovisual dissection manual (n = 96) or an improved written manual (n = 94) as an intervention, the control group (n = 89) received the standard dissection manual. After dissection, each student filled out tests and surveys and their dissections were evaluated. The audiovisual dissection manual did not have any significant positive effects on the examined parameters. The effects of the audiovisual dissection manual on the medical students' learning experience, as observed in this study, did not support further curriculum implementation of this kind of e-learning resource. This study can serve as an orientation for further evaluation and design of e-learning resources for the gross anatomy dissection course.  相似文献   

15.
Gross anatomy is a source of anxiety for matriculating medical students due to the large volume of information presented in a truncated timeline, and because it may be their first exposure to human cadavers. This study aimed to assess if video-based resources would affect matriculating medical students' anatomy state anxiety levels. Videos were designed to be short, YouTube-based units that served to provide orientation information about the anatomy course, dissection facilities, and available study resources to dispel anxiety around beginning their anatomy studies. To evaluate the impact of the videos, students in two consecutive matriculating years (2018 and 2019) completed the validated State-Trait Anxiety Inventory and a demographic questionnaire. The 2019 cohort (n = 118) served as the experimental group with access to the videos; while the 2018 cohort (n = 120) without video access served as a historical control. Analyses revealed that the groups were equivalent in terms of trait anxiety (P = 0.854) and anatomy state anxiety even when student video exposure was controlled (P = 0.495). Anatomy state anxiety was only significantly lower in students with prior formal anatomy exposure (P = 0.006). Further inquiry into students' prior anatomy experience identified that individuals with post-secondary dissection experience were significantly less anxious than those without formal anatomical experience (P = 0.023). These results may serve as a cautionary tale to educators; while preference for video-based instructional materials is prevalent in the literature, videos delivered on public social media platforms fail to prepare students for the psychological impact of studying human anatomy.  相似文献   

16.
Cadaveric dissection offers an important opportunity for students to develop their ideas about death and dying. However, it remains largely unknown how this experience impacts medical students' fear of death. The current study aimed to address this gap by describing how fear of death changed during a medical gross anatomy dissection course and how fear of death was associated with examination performance. Fear of death was surveyed at the beginning of the course and at each of the four block examinations using three of the eight subscales from the Multidimensional Fear of Death Scale: Fear of the Dead, Fear of Being Destroyed, and Fear for the Body After Death. One hundred forty-three of 165 medical students (86.7%) completed the initial survey. Repeated measures ANOVA showed no significant changes in Fear of the Dead (F (4, 108) = 1.45, P = 0.222) or Fear for the Body After Death (F (4, 108) = 1.83, P = 0.129). There was a significant increase in students' Fear of Being Destroyed (F (4, 108) = 6.86, P < 0.0005) after beginning dissection. This increase was primarily related to students' decreased willingness to donate their body. Concerning performance, there was one significant correlation between Fear for the Body After Death and the laboratory examination score at examination 1. Students with higher fears may be able to structure their experience in a way that does not negatively impact their performance, but educators should still seek ways to support these students and encourage body donation.  相似文献   

17.
The pterygopalatine fossa (PPF) is a bilateral space deep within the skull that serves as a major neurovascular junction. However, its small volume and poor accessibility make it a difficult space to comprehend using two-dimensional illustrations and cadaveric dissections. A three-dimensional (3D) printed model of the PPF was developed as a visual and kinesthetic learning tool for completely visualizing the fossa, its boundaries, its communicating channels, and its neurovascular structures. The model was evaluated by analyzing student performance on pre- and post-quizzes and a student satisfaction survey based on the five-point Likert scale. The first cohort comprised of 88 students who had never before studied the PPF. The second cohort consisted of 30 students who were previously taught the PPF. Each cohort was randomly divided into a control group who were provided with a half skull and an intervention group that were provided with the 3D printed model. The intervention group performed significantly better on the post-quiz as compared to the control group in cohort I (P = 0.001); while not significant, it also improved learning in cohort II students (P = 0.124). Satisfaction surveys indicated that the intervention group found the 3D printed model to be significantly more useful (P < 0.05) as compared to the half skull used by the control group. Importantly, the effect sizes for cohorts I and II (0.504 and 0.581, respectively) validated the statistical results. Together, this study highlights the importance of 3D printed models as teaching tools in anatomy education.  相似文献   

18.
Virtual microscopy (VM) has been utilized to improve students' learning experience in microscope laboratory sessions, but minimal attention has been given to determining how to use VM more effectively. The study examined the influence of VM on academic performance and teacher and student perceptions and compared laboratory test scores before and after VM incorporation. A total of 662 third-year students studying histology and 651 fourth-year students studying pathology were divided into two groups. The light microscopy (LM) group used a light microscope in 2014 and 2015, while the LM + VM group used the VM platform and a light microscope in 2016 and 2017. Four factors positively predict laboratory scores (R square, 0.323; P < 0.001): (i) the pathology course and test-enhanced learning, (ii) the VM platform and experience, (iii) medical students and lecture scores, and (iv) female students. The LM + VM group exhibited less score variability on laboratory examinations relative to their mean than the LM group. The LM + VM group was also associated with fewer failing grades (F grade; odds ratio, 0.336; P < 0.001) and higher scores (A grade; odds ratio, 2.084; P < 0.001) after controlling for sex, school, course, and lecture grades. The positive effect of the VM platform on laboratory test grades was associated with prior experience using the VM platform and was synergistic with more interim tests. Both teachers and students agreed that the VM platform enhanced laboratory learning. The incorporation of the VM platform in the context of test-enhanced learning may help more students to master microscopic laboratory content.  相似文献   

19.
Cadaver-specific postmortem computed tomography (PMCT) has become an integral part in anatomy teaching at several universities. Recently, the feasibility of contrast-enhanced (CE)-PMCT has been demonstrated. The purpose of this study was to identify particular strengths and weaknesses of both non-enhanced and contrast-enhanced PMCT compared to conventional cadaver dissection. First, the students’ perception of the learning effectiveness of the three different modalities have been assessed using a 34-item survey (five-point Likert scale) covering all anatomy course modules. Results were compared using the nonparametric Friedman Test. Second, the most frequent artifacts in cadaver CT scans, were systematically analyzed in 122 PMCT and 31 CE-PMCT data sets to quantify method-related limitations and characteristics. Perfusion quality was assessed in 57 vascular segments (38 arterial and 19 venous). The survey was answered by n = 257/320 (80.3%) students. Increased learning benefits of PMCT/ CE-PMCT compared to cadaver dissection were found in osteology (2/3 categories, P < 0.001), head and neck (2/5 categories, P < 0.01), and brain anatomy (3/3 categories, P < 0.01). Contrast-enhanced-PMCT was perceived particularly useful in learning vascular anatomy (10/10 categories, P < 0.01). Cadaver dissection received significantly higher scores compared to PMCT and CE-PMCT in all categories of the abdomen and thorax (7/7 categories, P < 0.001), as well as the majority of muscular anatomy (5/6 categories, P < 0.001). Frequent postmortem artifacts (total n = 28, native-phase n = 21, contrast injection-related n = 7) were identified and assessed. The results of this work contribute to the understanding of the value of integrating cadaver-specific PMCT in anatomy teaching.  相似文献   

20.
Students' motivation is a vital determinant of academic performance that is influenced by the learning environment. This study aimed to assess and analyze the motivation subscales between different cohorts (chiropractic, dental, medical) of anatomy students (n = 251) and to investigate if these subscales had an effect on the students' anatomy performance. A 31-item survey, the Motivated Strategies for Learning Questionnaire was utilized, covering items on intrinsic and extrinsic goal orientation, task value, control of learning belief, self-efficiency for learning and performance, and test anxiety. First-year dental students were significantly more anxious than chiropractic students. Second-year chiropractic students attached more value to anatomy education than second-year medical students. The outcome of this research demonstrated a significant relationship between first- and second-year chiropractic students between anatomy performance and motivation subscales controlling for gender such as self-efficacy for learning and performance was (β = 8, CI: 5.18–10.8, P < 0.001) and (β = 6.25, CI: 3.40–9.10, P < 0.001) for first year and second year, respectively. With regards to intrinsic goal orientation, it was (β = 4.02, CI: 1.19–6.86, P = 0.006) and (β = 5.38, CI: 2.32–8.44, P = 0.001) for first year and second year, respectively. For the control of learning beliefs, it was (β = 3.71, 95% CI: 0.18–7.25, P = 0.04) and (β = 3.07, CI: 0.03–6.12, P = 0.048) for first year and second year, respectively. Interventions aimed at improving these motivation subscales in students could boost their anatomy performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号