首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

2.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

3.
As human cadavers are widely used in basic sciences, medical education, and other training and research venues, there is a real need for experts trained in anatomy and dissection. This article describes a program that gives individuals interested in clinical and basic sciences practical experience working with cadavers. Participants are selected through an open application process and attend sessions focused on anatomical terminology, gross anatomy and radiography, and some of the educational applications of human cadavers. Dissection skills are honed during an intensive, two‐day cadaver dissection and orthopedic workshop. Participants communicate the knowledge they gain through table‐side discussions, reflect upon the experience during a memorial service, and submit written program evaluations. Additionally, the dissection and preparation of cadaveric materials accomplished in this course are used in the medical school gross anatomy course during the next academic year. From 2004 through 2008, the annual number of applicants increased from 40 to 167, and the number of participants increased from 25 to 43 per year. Program participants have represented diverse ethnic, educational, and professional backgrounds. Feedback from participants has been remarkably positive, including comments on the large amount of learning that takes place during the sessions, the positive impact the program has had on career choice, and the desire for program expansion. This program, which could be replicated at other institutions, teaches anatomy, prepares cadaveric prosections for teaching and training others, and encourages participants to pursue careers in anatomical and biomedical sciences. Anat Sci Educ 3: 77–82, 2010. © 2010 American Association of Anatomists.  相似文献   

4.
Anatomical education has been undergoing reforms in line with the demands of medical profession. The aim of the present study is to assess the impact of a traditional method like cadaveric dissection in teaching/learning anatomy at present times when medical schools are inclining towards student‐centered, integrated, clinical application models. The article undertakes a review of literature and analyzes the observations made therein reflecting on the relevance of cadaveric dissection in anatomical education of 21st century. Despite the advent of modern technology and evolved teaching methods, dissection continues to remain a cornerstone of anatomy curriculum. Medical professionals of all levels believe that dissection enables learning anatomy with relevant clinical correlates. Moreover dissection helps to build discipline independent skills which are essential requirements of modern health care setup. It has been supplemented by other teaching/learning methods due to limited availability of cadavers in some countries. However, in the developing world due to good access to cadavers, dissection based teaching is central to anatomy education till date. Its utility is also reflected in the perception of students who are of the opinion that dissection provides them with a foundation critical to development of clinical skills. Researchers have even suggested that time has come to reinstate dissection as the core method of teaching gross anatomy to ensure safe medical practice. Nevertheless, as dissection alone cannot provide uniform learning experience hence needs to be complemented with other innovative learning methods in the future education model of anatomy. Anat Sci Educ 10: 286–299. © 2016 American Association of Anatomists.  相似文献   

5.
It is universally recognized that cadaveric dissection is an essential part of anatomy training. However, it has been reported to induce mental distress in some students and impair their intrinsic motivation (IM) to study. One of the postulated reasons for this behavior is the lack of adequate information and preparation of students for cadaveric dissection. Therefore, it is hypothesized that providing relevant information prior to cadaveric dissection will ameliorate the mental distress, enhance the IM of students, and improve their academic performance. A cohort of occupational therapy students enrolled in an anatomy course were psychologically prepared for cadaveric dissection. Students were provided with a curated list of YouTube videos and peer-reviewed journal articles related to cadaveric dissection prior to the commencement of the anatomy course. All students were also required to attend an oral presentation immediately before commencing dissection. The control group included students who had not been provided with any resources in preparation for cadaveric dissection. Compared to the control group, students who had been prepared demonstrated better quality of cadaveric dissection, improved academic performance, reported less mental distress and greater IM. Moreover, students reported the oral presentation to be most relevant and journal articles to be least useful in their preparation. Therefore, this is an effective approach in the amelioration of mental distress and improvement of performance in anatomy students. Consequently, this study represents a paradigm shift in the pedagogy of anatomy, and could represent a vital element in the evolution of a revitalized anatomy curriculum.  相似文献   

6.
Despite reductions in the importance, time committed to, and status of anatomical education in modern medical curricula, anatomical knowledge remains a cornerstone of medicine and related professions. Anatomists are therefore presented with the challenge of delivering required levels of core anatomical knowledge in a reduced time‐frame and with fewer resources. One common response to this problem is to reduce the time available for students to interact with human specimens (either via dissection or handling of prosected material). In some curricula, these sessions are replaced with didactic or problem‐based approaches focussed on transmitting core anatomical concepts. Here, I propose that the adoption of philosophical principles concerning the relationship and differences between “direct experience” and “concept” provides a strong case in support of requiring students to gain significant exposure to human material. These insights support the hypothesis that direct experience of human material is required for “deep,” rather than “superficial,” understanding of anatomy. Anat Sci Ed 1:264–266, 2008. © 2008 American Association of Anatomists.  相似文献   

7.
Progressive curricular changes in medical education over the past two decades have resulted in the diaspora of gross anatomy content into integrated curricula while significantly reducing total contact hours. Despite the development of a wide range of alternative teaching modalities, gross dissection remains a critical component of medical education. The challenge posed to modern anatomists is how to maximize and integrate the time spent dissecting under the current curricular changes. In this study, an alternative approach to the dissection of the pelvis and perineum is presented in an effort to improve content delivery and student satisfaction. The approach involves removal of the perineum en bloc from the cadaver followed by excision of the pubic symphysis, removal and examination of the bladder and associated structures, examination and bisection of the midline pelvic organs in situ, and midsagittal hemisection of the pelvis for identification of the neurovasculature. Results indicate that this novel dissecting approach increases the number of structures identified by 46% ± 14% over current dissecting methods. Survey results indicate that students were better able to integrate lecture and laboratory concepts, understand the concepts, and successfully identify more structures using the new approach (P < 0.05). The concept of anatomic efficiency is introduced and proposed as a standard quantitative measure of gross dissection proficiency across programs and institutions. These findings provide evidence that innovative solutions to anatomy education can be found that help to maintain critical content and student satisfaction in a modern medical curriculum.  相似文献   

8.
The teaching of human anatomy has had to respond to significant changes in medical curricula, and it behooves anatomists to devise alternative strategies to effectively facilitate learning of the discipline by medical students in an integrated, applied, relevant, and contextual framework. In many medical schools, the lack of cadaver dissection as the primary method of learning is driving changes to more varied and novel learning and teaching methodologies. The present article describes the introduction and evaluation of a range of body painting exercises in a medical curriculum. Body painting was introduced into integrated clinical skills teaching sessions which included clinically important aspects of respiratory system, musculoskeletal system, and topics in regional anatomy including head and neck. Nontoxic body paints, easels, a mixture of brush sizes, and anatomical images were supplied. Students were allowed between 20 and 40 min to complete body painting tasks, in which they were encouraged to alternate between painting and acting as a model. Students were encouraged to use life‐like rendering and coloration where appropriate. Evaluation of these sessions was performed at the end of the semester as part of a larger evaluation process. The kinesthetic nature and active participation together with the powerful visual images of underlying anatomy appear to contribute to the value of body painting as a teaching exercise. In addition, it may have the added bonus of helping break down apprehension regarding peer–peer examination. Some practical advice on introducing this method of teaching in medical curricula based on the outcomes of the evaluation is given. On the basis of our experience and student feedback, we strongly advocate the use of body painting as an adjunct to surface anatomy and clinical skills teaching classes. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

9.
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was presented in an effort to improve content delivery and student satisfaction. The objective of this study is to acquire three-dimensional (3D) anatomical data using structured-light surface scanning to create a dynamic four-dimensional (4D) dissection tool of four regions: neck, male inguinal and femoral areas, female perineum, and brachial plexus. At each dissection step, identified anatomical structures were scanned using a 3D surface scanner (Artec Spider™). Resulting 3D color meshes were overlaid to create a 4D (3D+time) environment. An educational interface was created for neck dissection. Its implementation in the visualization platform allowed 4D virtual dissection by navigating from surface to deep layers and vice versa. A group of 28 second-year medical students and 17 first-year surgery residents completed a satisfaction survey. A majority of medical students (96.4%) and 100% of surgery residents said that they would recommend this tool to their colleagues. According to surgery residents, the main elements of this virtual tool were the realistic high-quality of 3D acquisitions and possibility to focus on each anatomical structure. As for medical students, major elements were the interactivity and entertainment aspect, precision, and accuracy of anatomical structures. This approach proves that innovative solutions to anatomy education can be found to help to maintain critical content and student satisfaction in anatomy curriculum.  相似文献   

10.
11.
Growing evidence supports the use of reflective writing activities centered around the human cadaveric dissection experience to support and assess elements of medical student wellness. Dissection may promote personal and professional development, increase resilience, and foster a sense of connection and community. This study employed a qualitative analysis of a reflective writing exercise to explore the question: “What is the impact of the cadaveric dissection anatomy experience on the personal and professional development of medical students?” This cross-sectional study was conducted at the conclusion of the first-year anatomy module. A total of 117 United States allopathic medical students were given a questionnaire designed to elicit the students' experiences and introspection. The exercise included four reflective questions that were provided to 20 groups of six students. Grounded theory analysis was used to explore themes that arose in students' responses. Participants exhibited several common reactions to cadaveric dissection. After analyzing all responses, 266 unique open codes were identified for all four questions. These open codes were sorted into ten distinct axial codes, which are broader categorical themes of open codes. The aims of our study were to identify themes that emerged as students reflected on the impact of their dissection experience using reflective writing as a tool to capture these themes and to gather information to inform pedagogical methodologies. The researchers observed that the educational effects of dissection captured in the reflective writing resembled those found in other areas of medical education that emphasize professional identity formation and important humanistic qualities.  相似文献   

12.
Medical schools in the United States continue to undergo curricular change, reorganization, and reformation as more schools transition to an integrated curriculum. Anatomy educators must find novel approaches to teach in a way that will bridge multiple disciplines. The cadaveric extraction of the central nervous system (CNS) provides an opportunity to bridge gross anatomy, neuroanatomy, and clinical neurology. In this dissection, the brain, brainstem, spinal cord, cauda equina, optic nerve/tract, and eyes are removed in one piece so that the entire CNS and its gateway to the periphery through the spinal roots can be appreciated. However, this dissection is rarely, if ever, performed likely due to time constraints, perceived difficulty, and lack of instructions. The goals of this project were (i) to provide a comprehensive, step‐by‐step guide for an en bloc CNS extraction and (ii) to determine effective strategies to implement this dissection/prosection within modern curricula. Optimal dissection methods were determined after comparison of various approaches/tools, which reduced dissection time from approximately 10 to 4 hours. The CNS prosections were piloted in small group sessions with two types of learners in two different settings: graduate students studied wet CNS prosections within the dissection laboratory and medical students used plastinated CNS prosections to review clinical neuroanatomy and solve lesion localization cases during their neurology clerkship. In both cases, the CNS was highly rated as a teaching tool and 98% recommended it for future students. Notably, 90% of medical students surveyed suggested that the CNS prosection be introduced prior to clinical rotations. Anat Sci Educ 11: 185–195. © 2017 American Association of Anatomists.  相似文献   

13.
This study compared the efficacy of two cardiac anatomy teaching modalities, ultrasound imaging and cadaveric prosections, for learning cardiac gross anatomy. One hundred and eight first-year medical students participated. Two weeks prior to the teaching intervention, students completed a pretest to assess their prior knowledge and to ensure that groups were equally randomized. Students, divided into pre-existing teaching groups, were assigned to one of two conditions; "cadaver" or "ultrasound." Those in the cadaver group received teaching on the heart using prosections, whereas the ultrasound group received teaching using live ultrasound images of the heart. Immediately after teaching, students sat a post-test. Both teaching modalities increased students' test scores by similar amounts but no significant difference was found between the two conditions, suggesting that both prosections and ultrasound are equally effective methods for teaching gross anatomy of the heart. Our data support the inclusion of either cadaveric teaching or living anatomy using ultrasound within the undergraduate anatomy curriculum, and further work is needed to compare the additive effect of the two modalities.  相似文献   

14.
The purpose of this study was to evaluate the extracurricular cadaveric dissection program available to medical students at an institution with a modern (time‐compressed, student‐centered, and prosection‐based) approach to medical anatomy education. Quantitative (Likert‐style questions) and qualitative data (thematic analysis of open‐ended commentary) were collated from a survey of three medical student cohorts who had completed preclerkship. Perceived benefits of dissection included the hands‐on learning style and the development of anatomy expertise, while the main barrier that limited participation was the time‐intensive nature of dissection. Despite perceived benefits, students preferred that dissection remain optional. Analysis of assessments for the MD2016 cohort revealed that dissection participation was associated with enhanced performance on anatomy items in each systems‐based unit examination, with the largest benefits observed on discriminating items that assessed knowledge application. In conclusion, this study revealed that there are academic and perceived benefits of extracurricular participation in dissection. While millennial medical students recognized these benefits, these students also indicated strong preference for having flexibility and choice in their anatomy education, including the choice to participate in cadaveric dissection. Anat Sci Educ 11: 294–302. © 2017 American Association of Anatomists.  相似文献   

15.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

16.
The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed toward simplification of work flow and ease of use by faculty, staff, and students. From the onset, the integration of state of the art technology was pursued to facilitate teaching and promote a student-centered pedagogical approach to dissections. The program, as realized, is comprised of three 16-week semesters with seven hours of contact time per week, namely three hours of lectures and four hours of dissection laboratory and microscopy time. Set outcomes were established, each revolving around clinical cases with integrated medical imaging. The design of the facility itself was not constrained by a legacy structure, allowing the School of Medicine, in collaboration with architects and contractors, to design the building from scratch. A design was implemented that allows for the sequential processing of cadaveric material in a unidirectional flow from reception, to preparation, embalming, storage, dissection, and maceration. Importantly, the odor of formaldehyde typically associated with anatomy facilities was eliminated outside of the dissection areas and minimized within via a high-performance ventilation system. By holistically incorporating an integrated curriculum, facility design, and teaching at an early stage, the authors believe they have created a system that might serve as a model for new anatomy programs.  相似文献   

17.
It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver dissection to gain a better understanding of 3D human anatomy and diagnostic radiology. Students used handheld digital imaging and communications in medicine viewers at the bench‐side (OsiriX on iPod touch or iPad), which enabled “pixel‐to‐tissue” direct comparisons of CT images and cadavers. Students had lectures and workshops on diagnostic radiology, and they completed study assignments where they discussed findings in the anatomy laboratory compared with CT radiology findings. This teaching method for gross and radiological anatomy was used beginning in 2009, and it yielded strongly positive student perspectives and significant improvements in radiology skills in later clinical courses. Anat Sci Educ 7: 438–449. © 2014 American Association of Anatomists.  相似文献   

18.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

19.
The teaching of gross anatomy has, for centuries, relied on the dissection of human cadavers, and this formative experience is known to evoke strong emotional responses. The authors hypothesized that the phenomenon of cadaver naming is a coping mechanism used by medical students and that it correlates with other attitudes about dissection and body donation. The authors developed a 33‐question electronic survey to which 1,156 medical students at 12 medical schools in the United States voluntarily responded (November 2011–March 2012). They also surveyed course directors from each institution regarding their curricula and their observations of students' coping mechanisms. The majority of students (574, 67.8%) named their cadaver. Students most commonly cited the cadaver's age as the reason they chose a particular name for the cadaver. A minority of the students who did not name the cadaver reported finding the practice of naming disrespectful. Almost all students indicated that they would have liked to know more about their donor, particularly his or her medical history. Finally, students who knew the birth name of the donor used it less frequently than predicted. The authors found that the practice of naming cadavers is extremely prevalent among medical students and that inventive naming serves as a beneficial coping mechanism. The authors suggest that developing a method of providing students with more information about their cadaver while protecting the anonymity of the donor and family would be useful. Anat Sci Educ 7: 169–180. © 2013 American Association of Anatomists.  相似文献   

20.
Prior to the challenges imposed by the Covid-19 pandemic, anatomy practical sessions at Trinity College Dublin involved eight to 10 students per donor station, rotating between digital learning, anatomical models/osteology, and dissection activities for three hours weekly. To maintain cadaveric participation in the anatomy laboratory while adhering to distancing guidelines, a transition to dyad pedagogy was implemented. This mode of delivery allowed two students per donor station to spend one hour per week in the anatomy laboratory with all digital learning elements transferred to the virtual learning platform Blackboard as pre- and post-practical session learning activities. Dyad pedagogy has been explored in clinical settings and simulation procedural-based training but is yet to be fully verified in anatomy education. To determine the effectiveness of hybrid practical sessions and reduced donor to student ratios, the opinions of first year medical students were examined using an online questionnaire with a 51% response rate. Although students recognized the merits of more time in the anatomy laboratory, including opportunities for self-directed study and exposure to anatomical variation, they felt that having two students per station enabled sufficient hands-on time with the donor body and fostered learning opportunities that would not be possible with larger groups. Strong preferences for quality time with the donor body supported by online resources suggests this modality should be a key consideration in course design for anatomy curricula and emphasizes the importance of gauging students' preferences to optimize satisfaction and learning output when pivoting to blended learning strategies in anatomy education.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号