首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Two models can be nonequivalent, but fit very similarly across a wide range of data sets. These near-equivalent models, like equivalent models, should be considered rival explanations for results of a study if they represent plausible explanations for the phenomenon of interest. Prior to conducting a study, researchers should evaluate plausible models that are alternatives to those hypothesized to evaluate whether they are near-equivalent or equivalent and, in so doing, address the adequacy of the study’s methodology. To assess the extent to which alternative models for a study are empirically distinguishable, we propose 5 indexes that quantify the degree of similarity in fit between 2 models across a specified universe of data sets. These indexes compare either the maximum likelihood fit function values or the residual covariance matrices of models. Illustrations are provided to support interpretations of these similarity indexes.  相似文献   

2.
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a nonlinear manner are common to all subjects. In this article we describe how a variant of the Michaelis–Menten (M–M) function can be fit within this modeling framework using Mplus 6.0. We demonstrate how observed and latent covariates can be incorporated to help explain individual differences in growth characteristics. Features of the model including an explication of key analytic decision points are illustrated using longitudinal reading data. To aid in making this class of models accessible, annotated Mplus code is provided.  相似文献   

3.
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model‐data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model‐data fit models is critical. In this instructional module, Allison Ames and Aaron Myers provide an overview of Posterior Predictive Model Checking (PPMC), the most common Bayesian model‐data fit approach. Specifically, they review the conceptual foundation of Bayesian inference as well as PPMC and walk through the computational steps of PPMC using real‐life data examples from simple linear regression and item response theory analysis. They provide guidance for how to interpret PPMC results and discuss how to implement PPMC for other model(s) and data. The digital module contains sample data, SAS code, diagnostic quiz questions, data‐based activities, curated resources, and a glossary.  相似文献   

4.
In this ITEMS module, we introduce the generalized deterministic inputs, noisy “and” gate (G‐DINA) model, which is a general framework for specifying, estimating, and evaluating a wide variety of cognitive diagnosis models. The module contains a nontechnical introduction to diagnostic measurement, an introductory overview of the G‐DINA model, as well as common special cases, and a review of model‐data fit evaluation practices within this framework. We use the flexible GDINA R package, which is available for free within the R environment and provides a user‐friendly graphical interface in addition to the code‐driven layer. The digital module also contains videos of worked examples, solutions to data activity questions, curated resources, a glossary, and quizzes with diagnostic feedback.  相似文献   

5.
Cross-cultural comparisons of latent variable means demands equivalent loadings and intercepts or thresholds. Although equivalence generally emphasizes items as originally designed, researchers sometimes modify response options in categorical items. For example, substantive research interests drive decisions to reduce the number of item categories. Further, categorical multiple-group confirmatory factor analysis (MG-CFA) methods generally require that the number of indicator categories is equal across groups; however, categories with few observations in at least one group can cause challenges. In the current paper, we examine the impact of collapsing ordinal response categories in MG-CFA. An empirical analysis and a complementary simulation study suggested meaningful impacts on model fit due to collapsing categories. We also found reduced scale reliability, measured as a function of Fisher’s information. Our findings further illustrated artifactual fit improvement, pointing to the possibility of data dredging for improved model-data consistency in challenging invariance contexts with large numbers of groups.  相似文献   

6.
In psychological research, available data are often insufficient to estimate item factor analysis (IFA) models using traditional estimation methods, such as maximum likelihood (ML) or limited information estimators. Bayesian estimation with common-sense, moderately informative priors can greatly improve efficiency of parameter estimates and stabilize estimation. There are a variety of methods available to evaluate model fit in a Bayesian framework; however, past work investigating Bayesian model fit assessment for IFA models has assumed flat priors, which have no advantage over ML in limited data settings. In this paper, we evaluated the impact of moderately informative priors on ability to detect model misfit for several candidate indices: posterior predictive checks based on the observed score distribution, leave-one-out cross-validation, and widely available information criterion (WAIC). We found that although Bayesian estimation with moderately informative priors is an excellent aid for estimating challenging IFA models, methods for testing model fit in these circumstances are inadequate.  相似文献   

7.
The factor mixture model (FMM) uses a hybrid of both categorical and continuous latent variables. The FMM is a good model for the underlying structure of psychopathology because the use of both categorical and continuous latent variables allows the structure to be simultaneously categorical and dimensional. This is useful because both diagnostic class membership and the range of severity within and across diagnostic classes can be modeled concurrently. Although the conceptualization of the FMM has been explained in the literature, the use of the FMM is still not prevalent. One reason is that there is little research about how such models should be applied in practice and, once a well-fitting model is obtained, how it should be interpreted. In this article, the FMM is explored by studying a real data example on conduct disorder. By exploring this example, this article aims to explain the different formulations of the FMM, the various steps in building a FMM, and how to decide between an FMM and alternative models.  相似文献   

8.
Proper model specification is an issue for researchers, regardless of the estimation framework being utilized. Typically, indexes are used to compare the fit of one model to the fit of an alternate model. These indexes only provide an indication of relative fit and do not necessarily point toward proper model specification. There is a procedure in the Bayesian framework called posterior predictive checking that is designed theoretically to detect model misspecification for observed data. However, the performance of the posterior predictive check procedure has thus far not been directly examined under different conditions of mixture model misspecification. This article addresses this task and aims to provide additional insight into whether or not posterior predictive checks can detect model misspecification within the context of Bayesian growth mixture modeling. Results indicate that this procedure can only identify mixture model misspecification under very extreme cases of misspecification.  相似文献   

9.
Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or subpopulations, rather than individual cases. This article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model, whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model.  相似文献   

10.
Given the relationships of item response theory (IRT) models to confirmatory factor analysis (CFA) models, IRT model misspecifications might be detectable through model fit indexes commonly used in categorical CFA. The purpose of this study is to investigate the sensitivity of weighted least squares with adjusted means and variance (WLSMV)-based root mean square error of approximation, comparative fit index, and Tucker–Lewis Index model fit indexes to IRT models that are misspecified due to local dependence (LD). It was found that WLSMV-based fit indexes have some functional relationships to parameter estimate bias in 2-parameter logistic models caused by violations of LD. Continued exploration into these functional relationships and development of LD-detection methods based on such relationships could hold much promise for providing IRT practitioners with global information on violations of local independence.  相似文献   

11.
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a nonlinear manner are common to all subjects. In this article we describe how a variant of the Michaelis-Menten (M-M) function can be fit within this modeling framework using Mplus 6.0. We demonstrate how observed and latent covariates can be incorporated to help explain individual differences in growth characteristics. Features of the model including an explication of key analytic decision points are illustrated using longitudinal reading data. To aid in making this class of models accessible, annotated Mplus code is provided.  相似文献   

12.
Model fit indices are being increasingly recommended and used to select the number of factors in an exploratory factor analysis. Growing evidence suggests that the recommended cutoff values for common model fit indices are not appropriate for use in an exploratory factor analysis context. A particularly prominent problem in scale evaluation is the ubiquity of correlated residuals and imperfect model specification. Our research focuses on a scale evaluation context and the performance of four standard model fit indices: root mean square error of approximate (RMSEA), standardized root mean square residual (SRMR), comparative fit index (CFI), and Tucker–Lewis index (TLI), and two equivalence test-based model fit indices: RMSEAt and CFIt. We use Monte Carlo simulation to generate and analyze data based on a substantive example using the positive and negative affective schedule (N = 1,000). We systematically vary the number and magnitude of correlated residuals as well as nonspecific misspecification, to evaluate the impact on model fit indices in fitting a two-factor exploratory factor analysis. Our results show that all fit indices, except SRMR, are overly sensitive to correlated residuals and nonspecific error, resulting in solutions that are overfactored. SRMR performed well, consistently selecting the correct number of factors; however, previous research suggests it does not perform well with categorical data. In general, we do not recommend using model fit indices to select number of factors in a scale evaluation framework.  相似文献   

13.
The power of the chi-square test statistic used in structural equation modeling decreases as the absolute value of excess kurtosis of the observed data increases. Excess kurtosis is more likely the smaller the number of item response categories. As a result, fit is likely to improve as the number of item response categories decreases, regardless of the true underlying factor structure or χ2-based fit index used to examine model fit. Equivalently, given a target value of approximate fit (e.g., root mean square error of approximation ≤ .05) a model with more factors is needed to reach it as the number of categories increases. This is true regardless of whether the data are treated as continuous (common factor analysis) or as discrete (ordinal factor analysis). We recommend using a large number of response alternatives (≥ 5) to increase the power to detect incorrect substantive models.  相似文献   

14.
制造业财务预警模型研究   总被引:8,自引:0,他引:8  
章通过对单变量模型、多元判别分析模型和Logistic回归模型的分析和比较,发现行业模型的变量选取和预测准确性均有所不同。多元判别分析模型对新数据适合性较好,Logistic模型对原数据拟合性最好。通过行业模型的研究找出了制造业独特的预测指标,最后利用新样本对各模型的适应性作了检验。  相似文献   

15.
In recent years, longitudinal data have become increasingly relevant in many applications, heightening interest in selecting the best longitudinal model to analyze them. Too often, traditional practice rather than substantive theory guides the specific model selected. This opens the possibility that alternative models might better correspond to the data. In this paper, we present a general longitudinal model that we call the Latent Variable-Autoregressive Latent Trajectory (LV-ALT) model that includes most other longitudinal models with continuous outcomes as special cases. It is capable of specializing to most models dictated by theory or prior research while having the capacity to compare them to alternative ones. If there is little guidance on the best model, the LV-ALT provides a way to determine the appropriate empirical match to the data. We present the model, discuss its identification and estimation, and illustrate how the LV-ALT reveals new things about a widely used empirical example.  相似文献   

16.
In this ITEMS module, we provide a didactic overview of the specification, estimation, evaluation, and interpretation steps for diagnostic measurement/classification models (DCMs), which are a promising psychometric modeling approach. These models can provide detailed skill‐ or attribute‐specific feedback to respondents along multiple latent dimensions and hold theoretical and practical appeal for a variety of fields. We use a current unified modeling framework—the log‐linear cognitive diagnosis model (LCDM)—as well as a series of quality‐control checklists for data analysts and scientific users to review the foundational concepts, practical steps, and interpretational principles for these models. We demonstrate how the models and checklists can be applied in real‐life data‐analysis contexts. A library of macros and supporting files for Excel, SAS, and Mplus are provided along with video tutorials for key practices.  相似文献   

17.
This research was designed to investigate how much more suitable moving average (MA) and autoregressive-moving average (ARMA) models are for longitudinal panel data in which measurement errors correlate than AR, quasi-simplex, and 1-factor models. The conclusions include (a) when testing for a stochastic process hypothesized to occur in a longitudinal data set, testing for other processes is necessary, because incorrect models often fit other processes well enough to be deceiving; (b) when measurement error correlations are flagged to be relatively high in panel data, the fit and propriety of an MA or ARMA model should be considered and compared to the fit and propriety of other models; (c) when an MA model is fit to AR data, measurement error correlations may nonetheless be deceptively high, though fortunately MA model fit indexes are almost always lower than those for an AR model; and (d) the assumption that longitudinal panel data always contain measurement error correlations is patently false. In summary, whenever evaluating longitudinal panel data, the fit, propriety, and parsimony of all 5 models should be considered jointly and compared before a particular model is endorsed as most suitable.  相似文献   

18.
A paucity of research has compared estimation methods within a measurement invariance (MI) framework and determined if research conclusions using normal-theory maximum likelihood (ML) generalizes to the robust ML (MLR) and weighted least squares means and variance adjusted (WLSMV) estimators. Using ordered categorical data, this simulation study aimed to address these queries by investigating 342 conditions. When testing for metric and scalar invariance, Δχ2 results revealed that Type I error rates varied across estimators (ML, MLR, and WLSMV) with symmetric and asymmetric data. The Δχ2 power varied substantially based on the estimator selected, type of noninvariant indicator, number of noninvariant indicators, and sample size. Although some the changes in approximate fit indexes (ΔAFI) are relatively sample size independent, researchers who use the ΔAFI with WLSMV should use caution, as these statistics do not perform well with misspecified models. As a supplemental analysis, our results evaluate and suggest cutoff values based on previous research.  相似文献   

19.
In the past, several models have been developed for the estimation of the reliability and validity of measurement instruments from multitrait-multimethod (MTMM) experiments. Suggestions have been made for additive, multiplicative and correlated uniqueness models, whereas recently Coenders and Saris (2000) suggested a procedure to test these models against one another. In this article, the different models suggested for the analysis of MTMM matrixes have been compared for their fit to 87 data sets collected in the United States (Andrews, 1984; Rodgers, Andrews, & Herzog, 1992), Austria (Koltringer, 1995), and the Netherlands (Scherpenzeel & Saris, 1997). As most variables are categorical, the analysis has been carried out on the basis of polychoric-polyserial correlation coefficients and of Pearson correlations. The fit of the models based on polychoric correlations is much worse than the fit of models based on product moment correlations, but in both cases a model that assumes additive method effects fits most data sets better than the other models, including the so-called multiplicative models.  相似文献   

20.
Change over time often takes on a nonlinear form. Furthermore, change patterns can be characterized by heterogeneity due to unobserved subpopulations. Nonlinear mixed-effects mixture models provide one way of addressing both of these issues. This study attempts to extend these models to accommodate time-unstructured data. We develop methods to fit these models in both the structural equation modeling framework as well as the Bayesian framework and evaluate their performance. Simulations show that the success of these methods is driven by the separation between latent classes. When classes are well separated, a sample of 200 is sufficient. Otherwise, a sample of 1,000 or more is required before parameters can be accurately recovered. Ignoring individually varying measurement occasions can also lead to substantial bias, particularly in the random-effects parameters. Finally, we demonstrate the application of these techniques to a data set involving the development of reading ability in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号