首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
2.
This study compared modeling skills and knowledge structures of four groups as seen in their understanding of air quality. The four groups were: experts (atmospheric scientists), intermediates (upper-level graduate students in a different field), advanced novices (talented 11th and 12th graders), and novices (10th graders). It was found that when the levels of modeling skills were measured, for most skills there was a gradual increase across the spectrum from the novices to the advanced novices to the intermediates to the experts. The study found the experts used model-based reasoning, the intermediates and advanced novices used relation-based reasoning, and the novices used phenomena-based reasoning to anticipate conclusions. The experts and intermediates used more bi-variable relationships in experimental design and anticipated conclusions, but used more multiple-variable relationships in identifying relationships. By contrast, the advanced novices and novices mostly used bi-variable relationships in all modeling skills. Based on these findings, we suggest design principles for model-based teaching and learning such as designing learning activities to encourage model-based reasoning, scaffolding one??s modeling with multiple representations, testing models in authentic situations, and nurturing domain-specific knowledge during modeling.  相似文献   

3.
4.
Developmental studies assessing the impact of domain-specific knowledge on memory are discussed. In the first section of the review, different ways through which domain-specific knowledge relates to strategy use in memory tasks are briefly summarized. Empirical evidence indicating nonstrategic effects of the knowledge base are discussed next. In particular, findings based on the expert-novice paradigm are used to compare the knowledge structure and memory performance of experts and novices of different ages, and to explore how individual differences relate to the acquisition and use of domain-specific knowledge. The review shows that domain-specific knowledge permits children to process and remember domain-related information more efficiently, apply strategies more effectively, and integrate novel information more easily than domains for which they have less detailed knowledge. If the knowledge base is particularly rich, it exerts a greater influence than other sources of memory development (i.e., memory capacity, strategies, and metamemory) combined.  相似文献   

5.
The purpose of this study was to describe the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Thirteen novices (five high-school students, five undergraduate majors, and three nonmajors) and ten experts (six doctoral students and four faculty members) were videotaped as they individually solved standard chemical equilibrium problems. The nature of the problems was such that they required more than mere recall or algorithmic learning and yet simple enough to provide the novices a reasonable chance of solving them. Extensive analysis of the think-aloud protocols produced 27 behavioral tendencies that can be used to describe and differentiate between successful and unsuccessful problem solvers. Successful solvers' perceptions of the problem were characterized by careful analysis and reasoning of the task, use of related principles and concepts to justify their answers, frequent checks of the consistency of answers and reasons, and better quality of procedural and strategic knowledge. Unsuccessful subjects had many knowledge gaps and misconceptions about the nature of chemical equilibrium. Even faculty experts were sometimes unable to correctly apply common chemical principles during the problem-solving process. Important theoretical concepts such as molar enthalpy, heat of reaction, free energy of formation, and free energy of reaction were rarely used by novices in explaining problems.  相似文献   

6.
Expert-novice problem-solving research is extended in this study to include classical genetics. Eleven undergraduates (novices) and nine graduate students and instructors (experts) were videotaped as they solved moderately complex genetics problems. Detailed analysis of these “think aloud” protocols resulted in 32 common tendencies that could be used to differentiate between successful and unsuccessful problem solvers. Experts perceive a problem as a task requiring analysis and reasoning and they tend to use a knowledge-development (forward-working) approach. They make frequent checks on the correctness of their work, use accurate and detailed bookkeeping procedures, and have a broader range of heuristics to apply to the problem. It is clear that studying problem solving using the expert/novice design requires that the problems be difficult enough to require more than more recall and yet simple enough to allow novices a chance for solution. Applying elementary probability concepts seemed to be the most difficult aspect of many of the genetics problems, even for the experts.  相似文献   

7.
Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise—undergraduate students of chemistry and Ph.D. students in physical chemistry—identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed.  相似文献   

8.
Situating the conceptual knowledge of a science discipline in the context of its use in the solving of problems allows students the opportunity to develop: a highly structured and functional understanding of the conceptual structure of the discipline; general and discipline-specific problem-solving strategies and heuristics; and insight into the nature of science as an intellectual activity. In order realize these potential learning outcomes, the reconstructions of scientific theories used in problem solving must provide a detailed account of (1) realistic scientific problems and their solutions; (2) problem-solving strategies and patterns of reasoning of disciplinary experts; (3) the various ways that theories function for both disciplinary experts and students; and (4) the way theories, as solutions to realistic scientific problems, develop over time. The purpose of this paper, therefore, is to provide further specificity regarding a philosophical reconstruction of the structure of Classical Genetics Theory that can facilitate problem-solving instruction. We analyze syntactic, semantic and problem-based accounts of theory structure with respect to the above criteria and develop a reconstruction that incorporates elements from the latter two. We then describe how that reconstruction can facilitate realistic problem solving on the part of students.  相似文献   

9.
This exploratory study examined differences in the problem representations of a case‐based situation by expert and novice instructional designers. The experts and half of the novices (control group) received identical directions for case analysis, while the other novices (treatment group) received additional guidelines recommending analysis strategies that experts tend to use. After participants' case analyses were scored on four dimensions of problem representation, a Wilcoxon nonparametric test was performed. Significant differences were noted between experts and control novices on the total score and on two dimensions of problem representation. Treatment novices did not differ significantly from experts, while control and treatment novices differed significantly on one dimension. Implications for future research and practice are discussed.  相似文献   

10.
The mechanism linking instruction in scientific topics and instruction in logical reasoning strategies is not well understood. This study assesses the role of science topic instruction combined with logical reasoning strategy instruction in teaching adolescent students about blood pressure problems. Logical reasoning instruction for this study emphasizes the controlling-variables strategy. Science topic instruction emphasizes variables affecting blood pressure. Subjects receiving logical reasoning instruction link their knowledge of blood pressure variables to their knowledge of controlling variables more effectively than those receiving science topic instruction alone—their specific responses show how they attempt to integrate their understanding.  相似文献   

11.
Students in complex visual domains must acquire visual problem solving strategies that allow them to make fast decisions and come up with good solutions to real-time problems. In this study, 31 air traffic controllers at different levels of expertise (novice, intermediate, expert) were confronted with 9 problem situations depicted on a radar screen. Participants were asked to provide the optimal order of arrival of all depicted aircrafts. Eye-movements, time-on-task, perceived mental effort, and task performance were recorded. Eye-tracking data revealed that novices use inefficient means-end visual problem solving strategies in which they primarily focus on the destination of aircraft. Higher levels of expertise yield visual problem solving strategies characterized by more efficient retrieval of relevant information and more efficient scan paths. Furthermore, experts' solutions were more similar than intermediates' solutions and intermediates' solutions were more similar than novices' solutions. Performance measures showed that experts and intermediates reached better solutions than novices, and that experts were faster and invested less mental effort than intermediates and novices. These findings may help creating eye-movement modeling examples for the teaching of visual problem solving strategies in complex visual domains.  相似文献   

12.
The purpose of this study was to compare in-service and preservice earth and space science teachers on their general mental abilities, their content knowledge or declarative knowledge of earth and space sciences, the Gagnean levels of their content knowledge or declarative knowledge, and the procedural knowledge used in solving earth and space science problems. This study used a contrast-group design to compare in-service (n = 30) and preservice (n = 30) earth and space science teachers. The in-service earth science teachers (a) bring more declarative knowledge to the problem-solving situation, (b) use fewer steps while problem solving, (c) generate more subroutines and alternate hypotheses, and (d) possess different structural knowledge than do preservice earth science teachers. Findings from this study support Norman's theory of learning that experts (in-service teachers) function at the tuning mode of learning, whereas novices (preservice teachers) function in an accreting or structuring mode. In-service earth science teachers exhibited smoothness, automaticity, and decreased mental effort not exhibited by preservice earth and space science teachers.  相似文献   

13.
The aim of this piece of research is to study physical reasoning and problem solving strategies among novices before and after a learning treatment in the field of hydrodynamics problems. The study is designed to investigate the meaning of becoming more expert in a specific domain. The results show several changes among novices after the learning treatment. Types of physical reasoning strategies appear which were not observed at the pretest. Nevertheless these correct reasoning strategies coexist with misconceptions (local reasoning). As far as general strategies are concerned, some changes are also observed. At the pretest most subjects proceed by trial and error. At the post-test their approach is guided by specific physical reasoning strategies, even if sometimes erroneous. Although the learning treatment did not deal with these various aspects, it appears that subjects experience a more rigourous approach, controlling much better than earlier the effects of their actions on the circuit. It seems as though, at the time of the pretest, the absence of domain-specific knowledge prevented students from applying a rigourous experimental approach, in principle independent of the domain concerned.  相似文献   

14.

Evidence is presented indicating that spontaneously generated analogies can play a significant role in expert problem solving. Since not all analogies are valid, it is important for the subject to have a way to evaluate their validity. In particular, this paper focuses on an evaluation strategy called bridging that has been observed in solutions to both science and mathematics problems. Spontaneous analogies have also been documented in the problem solving of students. The shared natural use of analogies for unfamiliar problems is an expert‐novice similarity.

Some of the strategies observed in experts were incorporated in a teaching technique for dealing with students’ preconceptions in mechanics. Students taught via these units achieved large gain differences over control groups. Thus non‐deductive reasoning strategies used by experts can give us valuable clues concerning instructional strategies for science students. This complements the prior focus in the literature on expert novice differences with a focus on expert novice similarities.  相似文献   

15.
Chi, Feltovich, and Glaser (1981) observed that experts (physics faculty) organized problems into groups according to the underlying physics law or principle applicable, whereas the groupings of novice physics students focused on objects, literal physics terms, and physical configurations in the problems. Replication of these findings in a number of similar studies has led to the general acceptance of the proposition that the mental schemes used by experts to organize information within a content domain are organized according to the “deep structure” of the domain, whereas the schemes of novices are bound by “surface” dimensions. Categorizations of genetics problems produced by genetics counselor and faculty experts in comparison to student novices obtained in the present study, however, are inconsistent with a deep structure/surface structure dichotomy. As expected, faculty experts focused almost exclusively on conceptual principles, but student sorts focused primarily on problem knowns and unknowns. The expert counselor sortings unexpectedly resembled those of the students in this regard. Counselors also emphasized solution techniques to be used, whereas students emphasized the verbatim wording of the problem statement. These findings are consistent with the hypothesis that as expertise is attained, a person restructures his/her knowledge of the domain into a framework that is based on critical dimensions that facilitate the daily use of that knowledge. Implications for theoreticians, researchers, and teachers are drawn. Whenever possible, future studies of expertise should include noneducator experts; teachers should help students develop the ability to construct and reconstruct the organizational frameworks of their knowledge so as to facilitate the effective use of that knowledge in the face of change.  相似文献   

16.
Due to the complexity of the legal domain, reasoning about law cases is a very complex skill. For novices in law school, legal reasoning is even more complex because they have not yet acquired the conceptual knowledge needed for distilling the relevant information from cases, determining applicable rules, and searching for rules and exceptions in external information sources such as lawbooks. This study investigated the role of conceptual knowledge in solving legal cases when no information sources can be used. Under such ‘unsupported’ circumstances, novice and advanced students performed less well than domain experts, but even experts’ performance was rather low. The second question addressed was whether novices even benefit from the availability of information sources (i.e., lawbook), because conceptual knowledge is prerequisite for effective use of such sources. Indeed availability of the lawbook positively affected performance only for advanced students but not for novice students. Implications for learning and instruction in the domain of law are discussed.  相似文献   

17.
This paper reports on a longitudinal study on how science student teachers' reasoning about a complex environmental issue developed through a teacher education programme in mathematics and science for grades 1–7 (ages 7–13). Of special interest was to follow the ways in which student teachers used scientific knowledge in their reasoning. The issue was taken from a newspaper article discussing the use of surplus heat from a crematorium for district heating. A group of 14 student teachers were followed through 2½ years of a teacher education programme, during which they were interviewed three times. The results showed that the student teachers drew upon scientific knowledge only to a limited degree when they were asked to clarify the situation in the article, quickly taking standpoints based upon emotional arguments. Several student teachers experienced a contradiction between science and their emotions. It was also shown that there was a conceptual problem, which could be important for how the student teachers understood the issue, and thereby influenced their decision‐making.  相似文献   

18.
Piaget's theory has profoundly influenced science education research. Following Piaget, researchers have focused on content-free strategies, developmentally based mechanisms, and structural models of each stage of reasoning. In practice, factors besides those considered in Piaget's theory influence whether or not a theoretically available strategy is used. Piaget's focus has minimized the research attention placed on what could be called “practical” factors in reasoning. Practical factors are factors that influence application of a theoretically available strategy, for example, previous experience with the task content, familiarity with task instructions, or personality style of the student. Piagetian theory has minimized the importance of practical factors and discouraged investigation of (1) the role of factual knowledge in reasoning, (2) the diagnosis of specific, task-based errors in reasoning, (3) the influence of individual aptitudes on reasoning (e.g., field dependence-independence), and (4) the effect of educational interventions designed to change reasoning. This article calls for new emphasis on practical factors in reasoning and suggests why research on practical factors in reasoning will enhance our understanding of how scientific reasoning is acquired and of how science education programs can foster it.  相似文献   

19.
Science education studies have revealed that students often have misconceptions about how nature works, but what happens to misconceptions after a conceptual change remains poorly understood. Are misconceptions rejected and replaced by scientific conceptions, or are they still present in students' minds, coexisting with newly acquired scientific conceptions? In this study, we use functional magnetic resonance imaging (fMRI) to compare brain activation between novices and experts in science when they evaluate the correctness of simple electric circuits. Results show that experts, more than novices, activate brain areas involved in inhibition when they evaluate electric circuits in which a bulb lights up, even though there is only one wire connecting it to the battery. These findings suggest that experts may still have a misconception encoded in the neural networks of their brains that must be inhibited in order to answer scientifically.  相似文献   

20.
This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号