首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

2.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

3.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

4.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

5.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

6.
题a、b为常数,且a≠0,函数f(x)=x/(ax+b),同时满足条件: (1)f(2)=1; (2)方程f(x)=x有唯一的解.求a、b的值.  相似文献   

7.
解含参数的一元二次方程实根分布问题时,同学们弄不清什么时候应该考虑用判别式Δ,因而产生解法错误或出现不必要的讨论.比如下面两例:例1已知关于x的方程x2+12-2ax+a2-1=0的两根均在区间[0,2]上,求实数a的取值范围.解考虑二次函数f(x)=x2+12-2ax+a2-1,其图象开口向上.由条件,有f(0)=a2-1≥0,f(2)=4+212-2a+a2-1≥0,0≤-1212-2a≤2,即a≤-1或a≥1,a∈R,14≤a≤94.∴1≤a≤94.辩析上述解法是错误的,因为3个条件f(0)≥0,f(2)≥0及0≤-1212-2a≤2仍不能保证原方程有实根,如图1,要正确解答原题,还必须在这3个条件之外附加Δ≥0,故正确结论是1≤…  相似文献   

8.
定理设f(x)为单调奇函数,则方程f(ax+b)+f(x)一O与方程(a二十b)十x一O同解. 证明由f(一二)~一f(x),则方程厂(ax十b)+f(x)一。可化为f(ax+b)~f(一x)‘又f(二)为单调函数,f为一一映射,故f(ax+b)一f(一x)成立的充要条件是ax+b-一x.证毕. (编者按:只是在实数范围内同解.) 例1.解方程 (x+6)工,91+x‘,,‘+Zx+6=0.‘._’解f(x)一x,‘+x为递增奇函数.故有(x十6)+x一O,原方程有唯一实根x-一3. 例2.解方程 (Zx+1)(z+丫(Zx+1),+3 +sx(2+了石压不万)一0. 解令t一3x,则原方程变为(亏+‘)(“+ +,(z+丫砰不压):考虑函数f(t)=t(2+奇函数,原方程化为了砰…  相似文献   

9.
<正>引例1(2013年安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1、x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6引例2(2014年全国高中数学联赛(江苏赛区)初赛)已知函数f(x)=lg|x-103|.若关于x的方程f2(x)-5f(x)-6=0的实根之和为m,则f(m)的值是.  相似文献   

10.
问题不等式21≤ax2x+23+x1+b≤121对一切x∈R恒成立,求a、b的值.这是许多数学资料都选为范例或典型练习的一道题,主要解法如下:设y=f(x)=ax2+3x+bx2+1,则21≤y≤121,即函数y=f(x)的值域是[21,121].将y=f(x)变形整理得:(y-a)x2-3x+(y-b)=0,由于原不等式对任意x∈R恒成立,则这个关于x的方程必有实根,Δ≥0,即9-4(y-a)(y-b)≥0,亦即4y2-4(a+b)y+(4ab-9)≤0(※),这个不等式的解为:12≤y≤121,则y1=21,y2=121是方程(※)的两个根,则由韦达定理,得a+b=64ab-94=141ba==15,或ba==15.,这个解法是错误的,举一个反例:取a=b=3,则y=f(x)=3x2x+23+x1+3=3+3…  相似文献   

11.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

12.
这里挖掘二次函数的一个重要性质以及在解题过程中的具体应用.性质如果二次函数f(x)=ax2 bx c(a≠0)有两个不相等的实数根x1、x2且x10.b2-4ac>0.证明:①由二次函数有两个不相等的实数根x1、x2.故原二次函数可写为f(x)=a(x-x1)(x-x2)且b2-4ac>0.由x10,x-x2<0,故a f(x)=a2(x-x1)(x-x2)<0,其逆也真.②由x0,x-x2>0,故a f(x)=a2(x-x1)(x-x2)>0且b2-4ac>0.其逆也真.(得证)图1图2我们从二次函数的图象也可以直观地看出:当a>0时(如…  相似文献   

13.
<正>1.构造函数方程例1(97年全国卷)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根分别为x1,x2,且满足0相似文献   

14.
<正>二次函数的一般表达式为f(x)=ax2+bx+c(a≠0),配方后可以表示为f(x)=a(x-h)2+k,如果它的图象与x轴有两个不同的交点x1,x2,还可表示为f(x)=a(x-x1)(x-x2).这样二次函数就有了三种不同的表达形式,在不同的问题中选择合适的表达形式对于快速准确地解决问题有着至关重要的作用.本文就f(x)=a(x-x1)(x-x2)的应用作一下探讨.  相似文献   

15.
<正>对于二次函数f(x)=ax2+bx+c(a≠0)若有根x1,x2,则可写成零点式f(x)=a(x-x1)(x-x2)(a≠0).同理对一个三次函数f(x)=ax3+bx2+cx+d(a≠0)若有根x1,x2,x3,则可写成零点式f(x)=a(x-x1)(x-x2)(x-x3)(a≠0),其应用广泛,下面简单讨论其应用.1巧证不等式  相似文献   

16.
导数的应用非常广泛,导数与函数的单调性的综合运用问题是高考命题的热点。有些貌似与导数无关的问题,若巧用导数去解决,常有"山重水复疑无路,柳暗花明又一村"的效果。下面举例说明。一、判断方程的根的个数由函数的图像性质特征可知,若f(x)在区间[a,b]上单调,且f(a)f(b)<0,则f(x)=0在[a,b]上有唯一的实根,若f(a)f(b)与零的大小无法确定,则f(x)=0在区间[a,b]上至多有一个实根。例1若-1相似文献   

17.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

18.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

19.
错在哪里     
忽视验证致错 已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求f(2)的值. 错解:f'(x) =3x2 +2ax+b. 由题意得{f'(1)=0,f(1)=10(=){3+2a+b=0,1+a+b+a2=10(=){a=4,b=-11或{a=-3,b=3.  相似文献   

20.
题目:已知函数f(x)=x2+ax+1/x2+a/x+b(x∈R,且x≠0)若实数a,b使得f(x)=0有实根,求a2+b2的最小值. 预备工作:令t=x+1/x,则t∈(-∞,-2]∪[2,+∞),方程f(x)=0(=)t2+at+b-2=0(|t|≥2). 方法一:(消元法) 解析:a2+b2=a2+(2-t2-at)2=(1+ t2)a2+2(2-t2)t·a+ (2-t2)2=(1+t2)(a-t2-2/1+t2)2+(2-t2)2-(2-t2)2t2/1+t2≥(2-t2)2-(2-t2)2t2/1+t2,令1+t2=m(m≥5)则 t2=m-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号