首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist–teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students’ learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers’ and scientists’ science teaching. A quasi-experimental design was used to understand the impact on students’ scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students’ scientific competency and a large effect on students’ scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.  相似文献   

2.
There is an urgent need to strengthen undergraduate science students’ epistemic knowledge, which requires having the scientists qua teachers on board. The divide between scientists’ perceptions of science and the perceptions held by those who study science is in this context problematic. Even so, this remains a sorely understudied area. The aim of the study was to identify pragmatic ways that hold the potential to facilitate integration of scholarly studies of scientific knowledge production with experientially based knowledge held by scientists to support the teaching of epistemic knowledge content to undergraduate science students. Earlier studies suggest that trust building is a central component. Our exploratory case study focuses on instructor perceptions and is based on informal interviews, participatory observation and surveys with instructors in a first-year undergraduate science course under revision. We identified the following central components as central to successful navigation of the divide between the scientific practice and science studies: Explicit formulation of learning objectives tied to epistemic knowledge acquisition; Conscious attention to vocabulary that triggers scientists’ aversion to science studies; Careful selection of historic and contemporary cases; and Systematic scaffolding of course activities. The conclusion regarding a common vocabulary stands out: by ridding our instructions from the vocabulary that caused concern among science instructors we succeeded in engaging them in conversations with students about the knowledge-producing process and challenge the view of science as characterised by facts and truths, rather than a form of scholarly inquiry that aims to produce knowledge about the natural world.  相似文献   

3.
A concern commonly raised in literature and in media relates to the declining proportions of students who enter and remain in the ‘science pipeline’, and whether many countries, including Australia and New Zealand, have enough budding scientists to fill research and industry positions in the coming years. In addition, there is concern that insufficient numbers of students continue in science to ensure an informed, scientifically literate citizenry. The aim of the research presented in this paper was to survey current Australian and New Zealand scientists to explore their reasons for choosing to study science. An online survey was conducted via a link to SurveyGizmo. The data presented are from 726 respondents who answered 22 forced-choice items and an open-ended question about the reasons they chose to study science. The quantitative data were analysed using t tests and analyses of variance followed by Duncan’s multiple range tests, and the qualitative data were analysed thematically. The quantitative data showed that the main reasons scientists reported choosing to study science were because they were interested in science and because they were good at science. Secondary school science classes and one particular science teacher also were found to be important factors. Of much less importance were the prestige of science and financial considerations. The qualitative data expanded on these findings and showed that passion for science and/or curiosity about the world were important factors and also highlighted the importance of recreational pursuits, such as camping when a child. In the words of one respondent, ‘People don’t go into science for the money and glory. It’s passion for knowledge and science that always attracted me to the field’.  相似文献   

4.
This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students’ pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science, scientists, a career in science and the urgency of climate change. The results from the pilot and the final study show the questionnaire meets validity and reliability criteria. A total number of 671 secondary school students from five European countries (France, Norway, Italy, The Netherlands and Spain) completed the questionnaire. The results of the principal components factor analysis show that all scales were unidimensional. Internal reliability using Cronbach’s alpha varies between 0.71 and 0.87. Concurrent validity was shown by younger students, females and students with high science grades scoring higher on several attitudes than respectively older students, male students, or students with low science grades. Overall, correlations show weak but significant relationships between science-related attitudes on the one hand and climate change- and environment-related attitudes on the other. Based on our findings, our instrument is useful for understanding the ways in which students think about science, scientists, climate change and the environment.  相似文献   

5.
Working at scientists’ elbows is one suggestion that educators make to improve science education, because such “authentic experiences” provide students with various types of science knowledge. However, there is an ongoing debate in the literature about the assumption that authentic science activities can enhance students’ understandings of scientific practice. The purpose of the study is to further address the debate in terms of the ethnographic data collected during an internship programme for high school students right through to their public presentations at the end. Drawing on activity theory to analyse these presentations, we found that students presented scientific practice as accomplished by individual personnel without collaboration in the laboratory. However, our ethnographic data of their internship interaction show that students have had conversations about the complex collaborations within and outside the laboratory. This phenomenon leads us to claim that students experienced authentic science in their internships, but their subsequent representations of authentic science are incomplete. That is, participating in authentic science internships and reporting scientific practice are embedded activities that constitute different goals and conditions rather than unrefracted reflections of one another. The debate on the influence on students’ understanding of science practice is not simply related to situating students in authentic science contexts, but also related to students’ values and ideology of reporting their understanding of and about science. To help students see these “invisible” moments of science practice is therefore crucial. We make suggestions for how the invisible in and of authentic science may be made visible.  相似文献   

6.
In times of global influence, compulsory education in the Nordic countries has promoted democracy as choice since the 1990s, as enhancing an individual good. Supporting education for democracy is a matter that concerns the world and society on the topic of ‘what shall he do? Shall he act for this or that end?’. This indicates that democratic education is not only a matter of individual good, but a public, regarding who I want to be, how I would like to respond towards both the world and society. As for public good, who I want to be involves having the freedom to act in the world that lies between us. The article explores Nordic tradition of people’s high school, which is known to enhance the enlightenment of the people and to support democracy as a public good. Focus group interviews with folk high school students in Norway were carried out. To theoretically interpret the findings, theories on freedom and action were used. Arendt’s theories contribute to the results by offering ways to theoretically comprehend students’ experiences of being seen and heard during their school years. The study asks to what extent, if any, people’s high schools in Norway contribute to and/or challenge education and democracy in today’s society.  相似文献   

7.
This paper synthesizes findings from three studies to answer a general question: What do casual, adult visitors learn about science from their science‐related experiences in free‐choice settings? Specifically we asked whether there are changes in how people think about science in their daily lives, the nature and use of scientific knowledge, and its communication by scientists. The three studies involved samples of visitors to an interactive science centre, visitors to a traditional natural history museum, and attendees at a series of public lectures, each given by an expert scientist in human genetics. Pretest and post‐test data collected by parallel questionnaires indicated that, despite the different nature of their experience in the three different settings, participants became more positive about the value of science and the work done by scientists and their ability to communicate with the public. At all venues, however, participants became less scientific in their thinking about the nature of scientific knowledge, becoming more likely to believe it to be infallible. The consistency of these findings was surprising, and participants’ changed views about the nature of scientific knowledge were unexpected. Possible explanations for theses outcomes were suggested in terms of participants’ reasons for attending the venue, the nature of their engagement, and the non‐controversial ways in which the exhibitions and lectures were structured. The findings suggest that the educational role of free‐choice settings should be considered carefully, particularly with regard to the representation of science.  相似文献   

8.
9.
Accepting that scientific literacy is the primary purpose of science in the compulsory years of schooling leads to the question ‘What does scientific literacy mean in a particular community?’ This paper reports a study designed to provide some insight into that question. Data were gathered through interviews with a sample of community leaders, in the state of Victoria, Australia, about their views of the purposes of school science.

The data reveal that, although most of those interviewed had no formal post‐school science education, their life experiences provided them with useful insights into the question raised. The wisdom of such people could make an important contribution during the initial stages of curriculum development in science.

As people successful in their own fields, the study participants were lifelong learners. Consequently, their responses suggest that a primary focus of school science must be to provide students with a framework that will enable them to continue learning beyond schooling. This is not just a matter of knowledge or skills, but of feeling comfortable with science.

The methods used provide a useful example of how views about education can be gathered from thoughtful, non‐expert community members. In this instance, they allowed a reconceptualization of the purposes of school science. These community leaders argued for an education for ‘science in life’ rather than an education about science.  相似文献   

10.
Much is known about high school students’ attitudes towards science but there is almost no research on what passion for science might look like and how it might be manifested. This exploratory case study took advantage of a unique group of highly gifted science students participating in the Australian Science Olympiad (N = 69) to explore their attitudes towards school science and science as presented in the Olympiad summer camp. In particular the role the summer camp might play in igniting the students’ passion for science was a focus of the research. Data were collected through a two-tiered survey of students’ attitudes towards school science, an evaluative survey of the Olympiad summer camp and in-depth interviews with six participants. Findings indicated that Olympiad students generally had positive attitudes towards school science with most selecting science as one of their favourite subjects. However, an underlying ambivalence about school science was noted in the data. In contrast, the Olympiad summer camp transformed students’ positive attitudes into passion for science. Seven themes emerged from the data providing a foundation for a model of what academic passion for science looks like.  相似文献   

11.
In this article the authors resort to a qualitative analysis of the plot of science fiction stories about a group of scientists, written by two 11th‐grade Earth and Life Science students (aged 17), and to semi‐structured interviews, with the double purpose of diagnosing their conceptions of the nature of science (namely, as regards scientists’ activity), and discussing the potentialities of this methodology in terms of research and education in science. The adopted methodology proved particularly effective in diagnosing the students’ conceptions of scientists’ characteristics, scientific activity, and science–technology–society interactions. The limited content of certain conceptions and a certain lack of knowledge on the part of the students concerning the processes and the epistemology of science highlight the need to pay explicit attention in science classes to the nature of scientific activity. Some of the ideas brought up by the students clearly show the influence of stereotypes and catastrophic scenarios depicted in films, television programs, and books, revealing media’s limitations when divulging scientific and technological themes to the general public and stressing the need for the school to promote a critical debate about science and technology images conveyed by the media.  相似文献   

12.
Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work.

Purpose

The aim of this case study was to examine the impact of an intervention on 15 elementary school students’ views of scientists.

Sample

An urban, fifth-grade, European elementary school classroom defined the context of this study.

Design and method

The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students’ initial views of scientists were investigated through a drawing activity, classroom discussions and interviews.

Results

Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist.

Conclusions

The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school–scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.  相似文献   

13.
Including the perspectives of scientists about the nature and process of science is important for an authentic and nuanced portrayal of science in science education. The small number of studies that have explored scientists’ worldviews about science has thus far generated contradictory findings, with recent studies claiming that scientists simultaneously hold contradictory sophisticated and naïve views. This article reports on an exploratory study that uses the framework of Bhaskar’s critical realism to elicit and separately analyse academic scientists’ ontological and epistemological views about science in semi-structured interviews. When the views of scientists are analysed through the lens of critical realism, it is clear that it is possible to hold a realist ontological commitment about what knowledge is of, simultaneously with a fallibilist epistemological commitment about knowledge itself. The apparent incongruence of scientists’ so-called naïve and sophisticated views about science is resolved when analysed using a critical realist framework. Critical realism offers a simple and coherent framework for science educators that avoids many of the problems of positivism and social constructivism by finding a middle ground between them. The three pillars of critical realism: ontological realism, epistemological fallibilism and judgmental rationality help to make sense of how socially constructed scientific knowledge can be anchored in an independent reality.  相似文献   

14.
Working with scientists has been suggested as an effective way for high-school students to learn authentic science. However, little research has involved students’ perceptions of science learning environments in a university internship. This study drew on the theoretical framework of community of practice with cogenerative dialogues to design an internship program that aims to build a constructivist internship for students. Students who learned science in the internship program developed stronger constructivist learning perceptions than those who learned science in school. Specifically, students perceived that they had more opportunities to think independently of the instructors and other students. Three effective principles for program design are: (a) high school students conduct open-inquiry projects with the support of scientists; (b) high school students and scientists conduct cogenerative dialogues regularly to address issues and share experiences; and (c) high school students present their project proposals and scientific findings at open house events. Implications of the results are discussed.  相似文献   

15.
Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of nanotechnology. One of the notable challenges is the lack of adequate knowledge about how materials behave at the nanoscale. As nanotechnology is relatively new, the current generation of scientists have not had the opportunity to learn the fundamentals of the technology at an early stage. Young students who are at the primary school level may follow the same trajectory if they are not exposed to the technology. There is a need to lay a strong foundation by introducing nanoscience and nanotechnology to students at the primary school level. It is during the early stages of child development that students master basic concepts for life long learning. Nevertheless, many primary school children, particularly those in developing countries are missing the chance of learning about nanoscience and nanotechnology because it is regarded as being abstract and complex. In this paper, we argue that despite the complexity of nanoscience and nanotechnology, science centres can be used as one of the platforms for exposing young students to the discipline. We use a case study of a museum-based science centre as an example to illustrate that young students can be exposed to nanoscience and nanotechnology using tactile and hands-on experience. The early engagement of primary school children with nanoscience and nanotechnology is important in raising the next generation of scientists who are firmly grounded in the discipline.  相似文献   

16.
Pre-service teachers around the world need to develop their content knowledge of scientific evidence to meet the requirements of recent school curriculum developments which prepare pupils to be scientifically literate. This research reports a replication study in Turkey of an intervention originally carried out with pre-service primary teachers in England. The cohorts had different characteristics; in particular, their overall ability, their confidence in science and how they had been taught science at school were different. Despite these differences the explicit teaching of the ‘concepts of evidence’, which is described, proved to be a targeted and efficient intervention in both cohorts. Following teaching both cohorts had increased their understanding of scientific evidence, improved their ability to conduct an open-ended investigation and they were able to ask questions about the evidence for claims made in a socio-scientific issue.  相似文献   

17.
Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen scientists. The butterfly unit included five lessons. The researchers observed the lessons and interviewed students and the classroom teacher. The students completed a unit evaluation survey after the unit. Findings indicate that the students enjoyed and were interested in activities such as reading about butterflies, learning and using new vocabulary, drawing butterfly life cycles, as well as hunting, tagging and releasing butterflies and publishing the data they had collected on a dedicated website. Through their participation in the unit, students had opportunities to act locally and globally, and to ‘see themselves’ in science through ‘being there’ experience. Units like this have the potential to develop students’ interest for longer-term engagement in science, even those students who may never envision themselves as professional scientists.  相似文献   

18.
Judith Lederman  Norman Lederman  Selina Bartels  Juan Jimenez  Mark Akubo  Shereen Aly  Chengcheng Bao  Estelle Blanquet  Ron Blonder  Mariana Bologna Soares de Andrade  Catherine Buntting  Mustafa Cakir  Heba EL-Deghaidy  Ahmed ElZorkani  Estelle Gaigher  Shuchen Guo  Arvi Hakanen  Soraya Hamed Al-Lal  Cigdem Han-Tosunoglu  Annemarie Hattingh  Anne Hume  Serhat Irez  Gillian Kay  Ozgur Kivilcan Dogan  Kerstin Kremer  Pi-Chu Kuo  Jari Lavonen  Shu-Fen Lin  Cheng Liu  Enshan Liu  Shiang-Yao Liu  Bin Lv  Rachel Mamlok-Naaman  Christine McDonald  Irene Neumann  Yaozhen Pan  Eric Picholle  Ana Rivero García  Carl-Johan Rundgren  David Santibáñez-Gómez  Kathy Saunders  Renee Schwartz  Frauke Voitle  Jakob von Gyllenpalm  Fangbing Wei  Jocelyn Wishart  Zhifeng Wu  Huang Xiao  Yalcin Yalaki  Qiaoxue Zhou 《科学教学研究杂志》2019,56(4):486-515
Although understandings of scientific inquiry (as opposed to conducting inquiry) are included in science education reform documents around the world, little is known about what students have learned about inquiry during their elementary school years. This is partially due to the lack of any assessment instrument to measure understandings about scientific inquiry. However, a valid and reliable assessment has recently been developed and published, Views About Scientific Inquiry (VASI; Lederman et al. [2014], Journal of Research in Science Teaching, 51, 65–83). The purpose of this large-scale international project was to collect the first baseline data on what beginning middle school students have learned about scientific inquiry during their elementary school years. Eighteen countries/regions spanning six continents including 2,634 students participated in the study. The participating countries/regions were: Australia, Brazil, Chile, Egypt, England, Finland, France, Germany, Israel, Mainland China, New Zealand, Nigeria, South Africa, Spain, Sweden, Taiwan, Turkey, and the United States. In many countries, science is not formally taught until middle school, which is the rationale for choosing seventh grade students for this investigation. This baseline data will simultaneously provide information on what, if anything, students learn about inquiry in elementary school, as well as their beginning knowledge as they enter secondary school. It is important to note that collecting data from all of the approximately 200 countries globally was not humanly possible, and it was also not possible to collect data from every region of each country. The results overwhelmingly show that students around the world at the beginning of grade seven have very little understandings about scientific inquiry. Some countries do show reasonable understandings in certain aspects but the overall picture of understandings of scientific inquiry is not what is hoped for after completing 6 years of elementary education in any country.  相似文献   

19.
不同教学方式对增进知识和提升能力有不同的作用。本实验的假设是在主体间师生关系中,通过教师有效选择和整合主题讲授、问题发现和主题问题建构等三种教学方式,有效增进学生的科学知识和提升学生的科学能力,目的是通过有效的科学知识教学促进学生科学能力的发展,使科学知识教学和科学能力发展相互促进。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号