首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Cytosine-substituted mildiomycin analogue (MIL-C) was produced effectively by supplementing cytosine into the culture of Streptoverticillium rimofaciens. In order to improve the yield of MIL-C, statistically-based experimental designs were applied to optimize the fermentation medium for S. rimofaciens ZJU 5119. Fifteen culture conditions were examined for their significances on MIL-C production using Plackett-Burrnan design. The Plackett-Burman design and one-variable-at-a-time design indicated that glucose and rice meal as the complex carbon sources, and peanut cake meal and NH4NO3 as the complex nitrogen sources were beneficial for MIL-C production in S. rimofaciens ZJU 5119. The results of further central composition design (CCD)showed that the optimal concentration of glucose, rice meal and peanut cake meal were 18.7 g/L, 64.8 g/L and 65.1 g/L,respectively. By using this optimal fermentation medium, the MIL-C concentration was increased up to 1336.5 mg/L, an approximate 3.8-fold improvement over the previous concentration (350.0 mg/L) with un-optimized medium. This work will be very helpful to the large-scale production of MIL-C in the future.  相似文献   

2.
Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization.Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by mul-tiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=-1.68 (2.64 g/L), x3 (MGSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.  相似文献   

3.
丙酮酸是一种重要的有机酸.为提高发酵法生产丙酮酸的转化率,研究了初始葡萄糖质量浓度、供氧、补糖方式和流加培养中氮的供给对光滑球拟酵母发酵生产丙酮酸的影响,发现葡萄糖质量浓度在116.2g/L左右较为适宜;实行分阶段供氧控制模式可实现高产量、高产率和高葡萄糖消耗速度;采用连续补糖方式可获得较高的丙酮酸产量;用氨水代替KOH控制pH值进行流加培养发酵过程中,细胞表现出很强的丙酮酸合成能力.  相似文献   

4.
The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P〈0.01) by C. butyricum ZJUCB.  相似文献   

5.
INTRODUCTION Butyric acid has several potential applications in industry. Its applications in the foodstuffs and beverage industries are widespread. It may be used as the pure acid in the dairy industry, or in the form of esters as a food additive to increase fruit fragrance. Furthermore, butyric acid could also have some important physiological functions. For example, butyric acid esters are the character-impact flavors in tropic fruits and dairy products (Centeno et al., 2002; Watson e…  相似文献   

6.
Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1.  相似文献   

7.
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface methodology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO4@7H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM,showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO4@7H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.  相似文献   

8.
INTRODUCTION Elastase is an enzyme that attacks and solubi-lizes elastin. As elastase can degrade elastin (Mori-hara, 1967) that other proteases cannot; it has broad applications in medical therapy, food processing and daily use chemicals industry. Considerable eff- orts were made to screen the elastase-producing strains, to study its pathogen effect and its charac-terizations (Tsuzuki and Oka, 1965; Tsai et al., 1988; Sharon et al., 1997; Ozaki and Shiio, 1975). Shiio, 1975). Reporte…  相似文献   

9.
Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×108 spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×108 spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents.  相似文献   

10.
Bacillus subtilisis widely used for the productionof vitamins and other products including industrial en-zymes such as amylases, proteases and lipase. Butsyntheses of those products are repressed by the pres-ence of glucose, which is viewed as carbon catabolicrepression (CCR). InBacillus subtilis,CCR is main-ly mediated by the global regulator protein CcpAwhich was encoded byccpAgene[1]. It is therefore of crucial importance to relievingCCR ofBacillus subtilisfor industrial production. I…  相似文献   

11.
An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface methodology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO4·7H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO4·7H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth. Project (No. 300024) supported by the Natural Science Foundation of Zhejiang Province, China  相似文献   

12.
INTRODUCTION The difficulties associated with large-scaleproduction of biotherapeutics provide a constantchallenge to the biotechnology industry. FDA hadadded “therapeutic DNA plasmid vectors” to the listof well-characterized biotechnology product (DoHHs,1996), and gene therapy has moved rapidly fromlaboratory scale to clinical trials. It is urgent to de-velop new protocols to obtain high-quality plasmidswith high yields and minimal or no contamination ofRNA and chromosomal D…  相似文献   

13.
Fermentation ofPhaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.  相似文献   

14.
用两步法将玉米棒芯生产木糖后剩下的废物木糖渣生物转化为乳酸,先用纤维素酶水解木糖渣生成葡萄糖;然后用乳酸菌发酵葡萄糖产乳酸。纤维素酶水解的最佳条件为pH=4.8,水解温度50℃,水解时间48h,此时葡萄糖含量可达41.76g·L-1。混合菌比例5:1,温度40℃左右,时间32h为乳酸菌发酵产乳酸的最佳条件,温度42C时发酵液中乳酸含量可达2.12g·L^-1。  相似文献   

15.
以饲料为原料筛选出一株既产乳酸又产芽孢的益生菌,经过分子生物学鉴定为凝结芽孢杆菌(Bacillus coagulans),命名为T-8。从培养基碳源、氮源、有机物浸出液、培养基pH、培养温度、培养时间等方面对菌株T-8展开发酵特性研究,结果表明,最优培养基配方为:玉米粉6 g/L、豆粕粉15 g/L、小麦麸皮浸出液60%、酵母粉5 g/L、蛋白胨10 g/L、氯化钠10 g/L,pH 5.0。以5%的接种量将种子液转接至最优培养基,在47℃的摇床中以200 r/min的转速振荡培养28 h,菌株T-8的细胞密度达到4.8×109 CFU/mL,芽孢率达到95.2%。本试验可为益生菌凝结芽孢杆菌应用于饲用微生物菌剂的工业化生产提供参考。  相似文献   

16.
对14份土样和7株实验室保藏菌株经初筛、摇瓶复筛,得到1株油脂产量较高的酵母菌,其油脂含量为7.34%。对影响该菌体产油脂的条件进行了单因素和正交实验,得出摇瓶发酵培养的最佳产油脂条件:发酵周期为4d,酵母膏和硫酸铵混合物为氮源,接种量为12%。在该条件下测得的菌体生物量为12.211g/L,油脂产量为1.524g/L,油脂含量为12.48%。  相似文献   

17.
Biotransformation of phytosterol(PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper.The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology.Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M.neoaurum ZJUVN-08 strain.Results showed that molar ratio of hydroxypropyl-β-cyclodextrin(HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production.By analyzing the statistical model of three-dimensional surface plot,the optimal process conditions were observed at 0.1 g/L inducer,pH 7.0,molar ratio of HP-β-CD to PS 1.92:1,8.98 g/L PS,and at 120 h of incubation time.Under these conditions,the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized(5.99 g/L),while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized(84.03%).The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results.It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.  相似文献   

18.
Response surface methodology was used to optimize the medium for antifungal active substance production from Streptomyces lydicus E12 in flask cultivation. Initially, the component factors, which influence antifungal substance production, were studied by varying one factor at a time. Starch, soybean cake powder, K2HPO4·3H2O and MgSO4·7H2O were found to have a significant effect on the production of antifungal substances by the traditional design. Then, a Box–Behnken design was applied for further optimization. A quadratic model was found to fit antifungal active substance production. The analysis revealed that the optimum values of the tested variable were starch 84.96 g/L, soybean cake powder 4.13 g/L, glucose 5 g/L, MgSO4·7H2O 1.23 g/L, K2HPO4·3H2O 2.14 g/L and NaCl 0.5 g/L. The test result of 67.44% antifungal inhibition agreed with the prediction and increased by 14.28% in comparison with the basal medium.  相似文献   

19.
A 24-membered ring macrolide compound,macrolactin A has potential applications in pharmaceuticals for its anti-infectious and antiviral activity.In this study,macrolactin A was produced by a marine bacterium,which was identified as Bacillus subtilis by 16S ribosomal RNA(rRNA) sequence analysis.Electrospray ionization mass spectrometry(ESI/MS) and nuclear magnetic resonance(NMR) spectroscopy analyses were used to characterize this compound.To improve the production,response surface methodology(RSM) involving Box-Behnken design(BBD) was employed.Faeces bombycis,the main by-product in sericulture,was used as a nitrogen source in fermentation.The interactions between three significant factors,F.bombycis,soluble starch,and(NH4)2SO4 were investigated.A quadratic model was constructed to fit the production and the factors.Optimum medium composition was obtained by analysis of the model.When cultivated in the optimum medium,the production of macrolactin A was increased to 851 mg/L,2.7 times as compared to the original.This study is also useful to find another way in utilizing F.bombycis.  相似文献   

20.
以胶体几丁质为唯一碳源,从大连渤海湾的底泥样品中分离到1株高产低温几丁质酶的海洋细菌,命名为DL-06。采用单因素优化方法确定该菌株产低温几丁质酶的最佳条件,结果表明:胶体几丁质5.0 g/L,胰蛋白胨5.0 g/L,发酵温度20℃,pH 7.0,2%接种量,装液量60%,转速130 r/min,陈海水1.0 L,发酵时间30 h,在该条件下酶活力达6.87 U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号