首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Providing prompts to induce focused processing of the central contents of instructional explanations is a promising instructional means to support novice learners in learning from instructional explanations. However, within research on the expertise reversal effect it has been shown that instructional means that are beneficial for novices can be detrimental for learners with more expertise if the instructional means provide guidance that overlaps with the internal guidance provided by the prior knowledge of learners with more expertise. Under such circumstances, prompts to induce focused processing might even be detrimental for learners with expertise whose prior knowledge already provides internal guidance to learn from explanations. On this basis, we aimed at experimentally varying expertise by developing prior knowledge. Specifically, we used a preparation intervention with contrasting cases to enhance learners’ prior knowledge (expertise). Against this background, we tested 71 university students in a 2 × 2 factorial experimental design: (a) Factor of expertise. Working with contrasting cases to develop prior knowledge and expertise to provide internal guidance to learn from instructional explanations (with vs. without), (b) Factor of prompts. Prompts to induce focused processing of the explanations (with vs. without). The results showed that prompts to induce focused processing fostered conceptual knowledge for novice learners whereas prompts hindered the acquisition of conceptual knowledge for learners with expertise that was developed by working with contrasting cases beforehand. Moreover, measures of subjective cognitive load and learning processes suggest that the instructional guidance provided by prompts compensated for the low internal guidance of novice learners and overlapped with the internal guidance of learners with expertise.  相似文献   

2.
Example-based learning often follows a design in which learners first receive instructional explanations that communicate new principles and concepts and second examples thereof. In this setting, using the knowledge components of the instructional explanations to explain the examples (i.e., generating principle-based self-explanations) is considered to be a highly important learning process. However, a potential suboptimality of this learning process is that it scarcely requires learners to organize the content of the instructional explanations into coherent mental representations. Thus, in two experiments we investigated whether prompting learners to organize the content of the instructional explanations before providing them with the examples (and self-explanation prompts) enhances the effectiveness of example-based learning. We consistently found that organization prompts fostered learning regardless of whether the learners also received self-explanation prompts. Hence, in example-based learning, learners should be prompted to not only generate principle-based self-explanations but also to organize the content of the instructional explanations.  相似文献   

3.
In instructional communication settings, instructional explanations play an important role. Despite the very common use of instructional explanations, empirical studies show that very often, they have no positive effects on learning outcomes. This ineffectiveness might be due to mental passivity of the recipient learners that leads to shallow processing of the explanations. Against this background, we introduce several types of instructional assistance to foster active processing of written instructional explanations in asynchronous computer-mediated instructional communication settings. The findings of three experiments showed that prompts or training for focused processing regarding the central principles and concepts of the explanation are especially effective with respect to fostering learning outcomes.  相似文献   

4.
The worked example effect within cognitive load theory is a very well-established finding. The concrete effectiveness of worked examples in a learning situation, however, heavily depends on further moderating factors. For example, if learners improve their processing of worked examples by actively explaining the worked examples to themselves, they are usually better able to solve transfer problems. Another way to enhance example processing is to present learners with instructional explanations instead of prompting them to produce these explanations on their own. In this article, we review 21 experimental studies to address the issue whether instructional explanations support example-based learning. Meta-analytic results lead to three important conclusions: First, the benefits of instructional explanations for example-based learning per se are minimal. Second, instructional explanations are more helpful for acquiring conceptual knowledge than for acquiring procedural knowledge. Third, instructional explanations are not necessarily more effective than other methods supporting example processing such as self-explaining.  相似文献   

5.
Video-based simulations are considered authentic approximations of practice that can support pre-service teachers' acquisition of diagnostic skills. Still, there is insufficient knowledge on the (differential) effectiveness of different types of prompts on learning in such environments. The presented study experimentally compared the effects of two types of prompts on participants’ judgment accuracy and diagnostic processes in a video-based simulation for diagnostic skills in the context of secondary mathematical argumentation skills. The prompts focused learners either on one indicator of argumentation skills (conceptual prompts) or two indicators and their relation (interconnecting prompts). Results indicate that the prompts effectively supported learning in short interventions. While conceptual prompts led to generally higher learning, interconnecting prompts showed a differential effectiveness based on prior knowledge. Besides highlighting a prototypical video-based simulation for diagnostic skills and prompts to support these, results give indications for teaching diagnostic skills and the adaptive use of prompts for simulation-based learning.  相似文献   

6.
Theories on learning with Multiple External Representations (MER) claim that low prior knowledge learners in science have difficulties using MER, which are seen as necessary to achieve a conceptual understanding. In two experiments, we analyze the mechanisms underlying the learning of chemistry with MER. Our first experiment focuses on how MER can support learning. We found no difference in learning gains of conceptual understanding, regardless of the format (whether MER were provided or not). It is concluded that chemical MER on themself cannot be seen as learning aids. The second experiment compares three types of instructional aids (prompts, prompts with an answer, and note-taking) to determine which types of aids enhance learning with MER. Contrary to the findings of Seufert (Learn Instr 13:227?C237, 2003), path-analysis suggests that the lowest prior knowledge group benefits the most from instructional aids such as prompts and note-taking. These aids guide learners?? attention towards one specific representational format (symbols), while other formats (submicroscopic representations) receive less attention.  相似文献   

7.
Despite the potential advantages of instructional explanations, evidence indicates that they are usually ineffective. Subsequent work has shown that in order to make instructional explanations effective indeed, one successful strategy is to combine them with indications of the limitations in learners' understanding that they are intended to revise, which makes learners deeply process the explanations. We explored whether this is so for both learners with low and those with high prior domain knowledge. In one experiment, 77 participants with low and high prior knowledge learned about plate tectonics from a multimedia presentation. In addition to the presentation, half the participants received instructional explanations combined with indications, whereas the rest received instructional explanations with no indications. After using the materials, the participants solved retention and transfer tests. Results showed that low prior knowledge learners learned more from explanations including indications of their misunderstandings, whereas high prior knowledge learners profited from instructional explanations either with or without the indications. We discussed theoretical and practical implications.  相似文献   

8.
Previous research seems to support the assumption that students need instructional guidance to activate and correct their preconceptions. Such an instructional strategy is the CONTACT strategy, characterised by continuous, computer-assisted activation of the conceptions of individual learners. Our previous study showed that the CONTACT strategy was effective in promoting conceptual change in text processing (domain: physical geography) because students (fifth- and sixth-graders, primary education) constructed more correct conceptions. However, students mainly seemed to focus on the central concepts from the training texts, disregarding other information. Therefore, the strategy was adapted to solve this problem of selective attention and to increase its effectiveness. Subjects (74 fifth- and sixth-graders) were assigned to three instructional conditions (original CONTACT condition, revised CONTACT-2 condition and control condition NO ACTIVATION). A mixed between-within-subjects design was used with 2 between-subjects factors (instructional condition and students' familiarity with the central concepts from the 7 texts used). Dependent variables concerned quality of conceptions and learning performance. Students from the CONTACT-2 condition constructed better conceptions and achieved higher learning performance scores than students from the other two conditions. Moreover, the effectiveness of the CONTACT-2 strategy appeared not to depend on the degree of conceptual resemblance between the performance test questions and the central concepts from the texts and on the moment of testing. Additional research should shed some light on the instructional conditions required to teach students how they themselves can initiate and perform learning activities aimed at conceptual change.  相似文献   

9.
The recent advances in software and computer technology have enabled the incorporation of dynamic representations into a multitude of educational and training environments. Cognitive load theory has been extensively used to enhance learning from complex dynamic representations by providing appropriate instructional designs to manage learner cognitive load. The available evidence, however, indicates that the suggested instructional designs that are effective for novice learners can reverse and become ineffective for learners with higher levels of prior knowledge. This phenomenon is called the expertise reversal effect. This paper reviews a series of recent experimental studies that have found interactions between levels of learners' organized knowledge structures (endogenous support) and effectiveness of different instructional designs (exogenous support), leading to the expertise reversal effect. It is argued that adapting instructional designs to learners with different amount of prior knowledge is a crucial part of effective learning.  相似文献   

10.
Learning with multiple representations is usually employed in order to foster understanding. However, it also imposes high demands on the learners and often does not lead to the expected results, especially because the learners do not integrate the different representations. Thus, it is necessary to support the learners’ self-explanation activity, which concerns the integration and understanding of multiple representations. In the present experiment, we employed multi-representational worked-out examples and tested the effects of two types of self-explanation prompts as help procedures for integrating and understanding multiple representations. The participants (N = 62) learned about probability theory under three conditions: (a) open self-explanation prompts, (b) self-explanation prompts in an assistance-giving-assistance-withholding procedure (assisting self-explanation prompts), or (c) no prompts (control group). Both types of self-explanation prompts fostered procedural knowledge. This effect was mediated by self-explanations directed to domain principles. Conceptual knowledge was particularly fostered by assisting self-explanation prompts which was mediated by self-explanations on the rationale of a principle. Thus, for enhancing high-quality self-explanations and both procedural knowledge and conceptual understanding, we conclude that assisting self-explanation prompts should be provided. We call this the assisting self-explanation prompt effect which refers to the elicitation of high-quality self-explanations and the acquisition of deep understanding.  相似文献   

11.
12.
Recent studies have tested the addition of worked examples to tutored problem solving, a more effective instructional approach than the untutored problem solving used in prior worked example research. These studies involved Cognitive Tutors, software designed to support problem solving while minimizing extraneous cognitive load by providing prompts for problem sub-goals, step-based immediate feedback, and context-sensitive hints. Results across eight studies in three different domains indicate that adding examples to Cognitive Tutors is beneficial, particularly for decreasing the instructional time needed and perhaps also for achieving more robust learning outcomes. These studies bolster the practical importance of examples in learning, but are also of theoretical interest. By using a stronger control condition than previous studies, these studies provide a basis for refining Cognitive Load Theory explanations of the benefits of examples. Perhaps, in addition to other reasons, examples may help simply because they more quickly provide novices with information needed to induce generalized knowledge.  相似文献   

13.
The goal of the present study was to examine the mechanisms underlying a strategy that we developed to make instructional explanations effective. In two experiments participants learned about plate tectonics from a multimedia material, including adjunct explanations that revised common misunderstandings. These explanations were either marked (including a device that pointed out the misunderstanding that the explanation was intended to revise) or unmarked. In both experiments participants receiving marked revising explanations outperformed those receiving unmarked ones in retention and transfer. In Experiment 1, think-aloud protocols revealed that marked revising explanations enabled learners to detect and repair flaws in their understanding more frequently than unmarked explanations. In Experiment 2, time recordings revealed that participants in the marked condition spent more time processing the revising explanations. Overall, the results mean that the revising instructional explanations that point out learners' misunderstandings promote a revision-oriented processing, in which learners monitor and revise their own understanding.  相似文献   

14.
The expertise reversal effect occurs when learner’s expertise moderates design principles derived from cognitive load theory. Although this effect is supported by numerous empirical studies, indicating an overall large effect size, the effect was never tested by inducing expertise experimentally and using instructional explanations in a computer-based environment. The present experiment used an illustrated introductory text and a computer program about statistical data analyses with 93 students. Retention and transfer tests were employed as dependent measures. Each learner was randomly assigned to one condition of a 2 × 2 between subjects factorial design with the two factors expertise (novices vs. ‘experts’) and explanations (with vs. without). Expertise was induced by adding expository examples and illustrations to the introductory text to enhance text coherence and facilitate text comprehension. The expertise reversal effect was replicated for the dependent measure transfer, but not for retention. Results and implications for adaptive learning environments are discussed.  相似文献   

15.
Recent research has shown that learning from worked-out examples is of major importance for initial skill acquisition in well-structured domains such as mathematics. However, only those learners who actively process the presented examples profit noticeably from this learning mode. Specifically, the learning outcomes depend on how well the learners explain the solution steps presented in the examples to themselves (‘self-explanation effect”). In a series of studies on learning mathematics from examples, learners’ spontaneous self-explanations and instructional means used to encourage self-explanations were investigated. In this research, the following main findings were obtained. Most learners were rather passive with respect to their spontaneous self-explanations. Among the active and successful learners, two subgroups employing different self-explanation styles could be identified. With regard to the instructional means used to induce effective example processing, it turned out that to employ “learning by teaching” in order to stimulate explanation activities was of very limited use. Attempts to directly train for or elicit certain types of self-explanations were more successful. However, even in the latter case, self-explanations had inherent deficits (e.g., proneness to errors). Thus, we sought to design learning arrangements that try to integrate self-explanations with well-timed and well-adapted instructional explanations (e.g., from tutors) in order to enhance students’ problem-solving skills.  相似文献   

16.
This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students’ knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.  相似文献   

17.
Notetaking and review are positively related to academic achievement, but many students record too few notes to benefit fully from these activities. This paper presents ten factors that may constrain notetaking and review, and provides corresponding implications for improving these study behaviors and for conducting further research. Some instructional implications are that students should record more extensive and conceptual notes and that instructors can help students by organizing their presentations, reducing lecture rate, pausing for notetaking, emphasizing key ideas and encouraging alternate frameworks for notetaking and review. Instructors can also facilitate learning by providing learners with notes for review and with knowledge about testing. In addition, instructors should consider the cognitive processing differences among students because certain learners are likely to find notetaking dysfunctional relative to other means of acquisition. The implications for research focus on determining the optimal notetaking and review activities.  相似文献   

18.
When teachers or instructors create computer-based learning environments, they often solely consider technical aspects of interactivity. As a consequence, learners’ main role is to respond to requests of the learning environment (e.g. by answering multiple-choice questions). This aspect of interactivity is, however, not sufficient to understand the complex benefits of interactivity for learners’ knowledge acquisition. In order to create a higher level of interactivity, an instructional task that encourages learners to design learning materials for fellow learners is used in this paper. We will show that this instructional task can induce interactive elements because learners are encouraged to take not only their own perspective into account when designing. In addition, we investigated if the quality of source material affects knowledge acquisition in design tasks. In a two-by-two design, students (n?=?108) had to design either a learning environment for others (i.e. to perform perspective-shifting), or a representation of acquired knowledge for themselves (no perspective-shifting) with less or more coherent information sources. Results indicate that performing perspective-shifting can be a powerful technique for eliciting interactive learning behavior and, thus, for learning. The quality of information sources does not influence knowledge acquisition to a great extent.  相似文献   

19.
Focus-on-form English teaching methods are designed to facilitate second-language learners' noticing of target language input, where "noticing" is an acquisitional prerequisite for the comprehension, processing, and eventual integration of new grammatical knowledge. While primarily designed for teaching hearing second-language learners, many focus-on-form methods lend themselves to visual presentation. This article reports the results of classroom research on the visually based implementation of focus-on-form methods with deaf college students learning English. Two of 3 groups of deaf students received focus-on-form instruction during a 10-week remedial grammar course; a third control group received grammatical instruction that did not involve focus-on-form methods. The 2 experimental groups exhibited significantly greater improvement in English grammatical knowledge relative to the control group. These results validate the efficacy of visually based focus-on-form English instruction for deaf students of English and set the stage for the continual search for innovative and effective English teaching methodologies.  相似文献   

20.
Knowledge engineering techniques for developing expert systems may also be useful for instructional development. A review of knowledge engineering focusing on knowledge representation and knowledge acquisition suggests ways in which these methods could be adapted to developing instructional systems. As further work is done on intelligent computer-assisted instructional systems and other complex instructional development projects, knowledge engineering skills may become more important for the instructional developer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号