首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate students uniformly perceived deficiencies in their anatomical knowledge when they started clinical training regardless of their school's didactic approach. A study assessing students' actual knowledge of clinical anatomy revealed no relationship between students' knowledge and the school's didactic approach. Test failure rates based on absolute standards set by different groups of experts were indicative of unsatisfactory levels of anatomical knowledge, although standards differed markedly between the groups of experts. Good test performance by students seems to be related to total teaching time for anatomy, teaching in clinical context, and revisiting anatomy topics in the course of the curriculum. These factors appeared to outweigh the effects of disciplinary integration orwhether the curriculum was problem‐based or traditional. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

2.
Despite extensive experience teaching residents, surgeons are an untapped resource for educating medical students. We hypothesized that by involving surgeons as teachers earlier in the medical school curriculum, medical students' interest in surgery will increase and their opinions of surgeons will improve. Five programs designed to involve surgeons as educators in the medical school curriculum were implemented. The first program, started in 2008, introduced surgical faculty into the first-year medical student anatomy dissection laboratories. Other programs initiated in 2008 included: Surgical Clinical Correlates in Anatomy, which involved faculty teaching through cadaver surgery; Clinical Pathologic Conferences in Anatomy, a surgeon-led conference based on clinical cases; and a women's faculty-student mentorship program. Table Rounds, a surgeon-led anatomy review that used clinical scenarios to quiz students was begun in 2009. All five programs were successfully integrated into the medical school curriculum. While student opinion of surgeons as educators improved, there were no significant changes in student interest in surgery as a career nor change in performance on written examinations over the Anatomy content covered by the surgeons. Surgical faculty and trainees can be integrated into the medical school curriculum. Involving surgeons as educators earlier in the medical school curriculum may have longer term effects than could be observed in this study. At a minimum, the experience improved student opinion of surgeons as educators.  相似文献   

3.
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer‐assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low‐budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer‐based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first‐year medical students who took the elective CHA course and those who did not in the three academic years 2007–2008, 2008–2009, and 2009–2010. The results of this study indicate that the CHA‐enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer‐assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer‐assisted learning in a multilingual and diverse cultural environment. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

4.
Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This study describes the development of and student reactions to an upper-level human anatomy laboratory course for undergraduate students that used a regional approach and contemporary, alternative teaching methods to a cadaver-based course. The alternative pedagogy to deliver the curriculum included use of commercially available, three-dimensional anatomical virtual dissection software, anatomical models coupled with a learning management system to offer Web-based learning, and a new laboratory manual with collaborative exercises designed to develop the student's anatomical skills and collaborative team skills. A Likert-scale survey with open-ended questions was used to ascertain student perceptions of the course and its various aspects. Students perceived that the noncadaver-based, upper-level human anatomy course with an engaging, regional approach is highly valuable in their learning of anatomy. anatomy.  相似文献   

5.
At the Medical College of Wisconsin, a procedure was developed to allow computerized grading and grade reporting of laboratory practical examinations in the Clinical Human Anatomy course. At the start of the course, first year medical students were given four Lists of Structures. On these lists, numbered items were arranged alphabetically; the items were anatomical structures that could be tagged on a given lab practical examination. Each lab exam featured an anatomy laboratory component and a computer laboratory component. For the anatomy lab component, students moved from one question station to another at timed intervals and identified tagged anatomical structures. As students identified a tagged structure, they referred to a copy of the list (provided with their answer sheet) and wrote the number corresponding to the structure on their answer sheet. Immediately after the anatomy lab component, students were escorted to a computer instruction laboratory where they typed their answer numbers into a secured testing component of a learning management system that recorded their answers for automatic grading. After a brief review of examination scores and item analysis by faculty, exam scores were reported to students electronically. Adding this brief computer component to each lab exam greatly reduced faculty grading time, reduced grading errors and provided faster performance feedback for students without changing overall student performance. Anat Sci Ed 1:220–223, 2008. © 2008 American Association of Anatomists.  相似文献   

6.
Professionalism and ethics have gained widespread recognition as competencies to be fulfilled, taught, and assessed within medical education. The role of the anatomy course in developed nations has evolved over time and now encompasses multiple domains, including knowledge, skills, and the inculcation of professionalism and ethics. The Medical Council of India recently recommended the integration of professionalism teaching in undergraduate medical curricula. The authors investigated whether the initial orientation lectures and instructions given by faculty at the outset of undergraduate medical anatomy courses throughout India served a “hidden curriculum” regarding professionalism practices, and whether these orientation messages could serve as an early exposure to medical professionalism and ethics for medical students. An online survey was carried out among 102 anatomy faculty members across India requesting details about specific professionalism protocols and instructions regarding behavior in the dissection hall that are routinely given to preclinical students, as well as the importance that they placed on professional behavior. It was found that most faculty members regularly instruct students regarding expected behavior during the anatomy course, including dissection practices. These instructions stress attributes of professionalism like humanism, accountability, and honesty. However, there needs to be a more concentrated effort by educators to prohibit such unprofessional practices like dissection hall photography, and better information is required regarding biomedical waste disposal. Despite the absence of clear guidelines for professionalism teaching in medical education in India, the existing framework of anatomy education provides an opportunity to introduce the concept of professionalism to the first‐year medical student. This opportunity may provide an early foundation for designing a professionalism‐integrated curriculum. Anat Sci Educ 10: 433–443. © 2017 American Association of Anatomists.  相似文献   

7.
Understanding the three‐dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un‐embalmed donor was scanned through high‐resolution computed tomography. The scan data underwent segmentation and post‐processing and a range of 3D‐printed anatomical models were produced. A four‐stage mixed‐methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post‐test to assess change in learner knowledge following 3D‐printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D‐printed models in small‐group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D‐image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D‐printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D‐printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection‐based teaching. Anat Sci Educ 11: 44–53. © 2017 American Association of Anatomists.  相似文献   

8.
Ultrasonography is a noninvasive imaging modality, and modern ultrasound machines are portable, inexpensive (relative to other imaging modalities), and user friendly. The aim of this study was to explore student perceptions of the use of ultrasound to teach “living anatomy”. A module utilizing transthoracic echocardiography was developed and presented to undergraduate medical, science, and dental students at a time they were learning cardiac anatomy as part of their curriculum. Relevant cardiac anatomy was explored on a student volunteer and images were projected in real‐time to all students via an AV projection system. Students were asked to complete a questionnaire about the learning experience and were given the opportunity to provide open feedback. The students' evaluations of this learning experience were very positive. They agreed or strongly agreed that it was an effective way to teach anatomy (90% medical; 77% dental; 100% science) and that it was incorporated in a way that promoted reinforcement of the lecture material (83% medical; 76% dental; 100% science). They agreed or strongly agreed with statements that the experience was innovative (93% medical; 92% dental; 100% science) and stimulated interest in the subject matter (86% medical; 75% dental; 96% science), and that they would like to see more modules, exploring other anatomical sites, incorporated into the curricula (83% medical; 72% dental; 100% science). We believe that ultrasound could be a useful tool, in conjunction with traditional teaching methods, to reinforce the learning of anatomy of a variety of different undergraduate student groups. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

9.
Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self‐study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three‐dimensional constructs to help students understand complex anatomical regions. Resources are self‐contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self‐study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre‐ and post‐examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module‐related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. Anat Sci Educ 7: 406–416. © 2014 American Association of Anatomists.  相似文献   

10.
Pathology and anatomy are both sciences that contribute to the foundations of a successful medical career. In the past decade, medical education has undergone profound changes with the development of a core curriculum combined with student selected components. There has been a shift from discipline‐based teaching towards problem‐based learning. Both anatomy and pathology are perceived to have suffered from this educational shift. The challenge is to introduce methods of learning for these subjects into an integrated student‐centered curriculum. The purpose of this study was to determine the prevalence of pathology in 12 donor cadavers in the dissecting room of the Bute Medical School, University of St Andrews. All of the cadavers had multiple pathologies (between three to four conditions) ranging from common to rare disorders. A number of prostheses and surgical interventions were also noted. This small study confirms that cadaveric dissection provides an excellent opportunity for the integration of anatomy, pathology, and clinical medicine into the early clinical training of undergraduate medical students. The identification of disease in a cadaver provides an excellent introduction to the gross features of a disease process, but does not substitute for the detailed study of a process later in the curriculum. Anat Sci Educ 3: 97–100, 2010. © 2010 American Association of Anatomists.  相似文献   

11.
Anatomy education provides students with opportunities to learn structure and function of the human body, to acquire professional competencies such as teamwork, interpersonal skills, self-awareness, and to reflect on and practice medical ethics. The fulfillment of this wide potential can present challenges in courses that are part of an integrated curriculum and shorter than traditional courses. This new reality, together with students' increasing concern about the stresses within medical education, led to efforts at Harvard Medical School to implement practical steps toward an optimal learning environment in anatomy. These were based on core elements of ethical anatomy education and principles of trauma-informed care. Anatomy is conceptualized here as the “first clinical discipline,” with relational interactions between anatomical educators, medical students, and body donors/patients. Essential prerequisites for the implementation of this work were support by the medical school leadership, open partnership between engaged students and faculty, faculty coordination, and peer-teaching. Specific interventions included pre-course faculty development on course philosophy and invitations to students to share their thoughts on anatomy. Student responses were integrated in course introductions, combined with a pre-dissection laboratory visit, an introductory guide, and a module on the history and ethics of anatomy. During the course, team-building activities were scheduled, and self-reflection encouraged, for example, through written exercises, and elective life-body drawing. Students' responses to the interventions were overall positive, but need further evaluation. This first attempt of a systematic implementation of an optimal learning environment in anatomy led to the identification of areas in need of adjustment.  相似文献   

12.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

13.
The Anatomy Learning Experiences Questionnaire (ALEQ) was designed by Smith and Mathias to explore students' perceptions and experiences of learning anatomy. In this study, the psychometric properties of a slightly altered 34‐item ALEQ (ALEQ‐34) were evaluated, and correlations with learning outcomes investigated, by surveying first‐ and second‐year undergraduate medical students; 181 usable responses were obtained (75% response rate). Psychometric analysis demonstrated overall good reliability (Cronbach's alpha of 0.85). Exploratory factor analysis yielded a 27‐item, three‐factor solution (ALEQ‐27, Cronbach's alpha of 0.86), described as: (Factor 1) (Reversed) challenges in learning anatomy, (Factor 2) Applications and importance of anatomy, and (Factor 3) Learning in the dissection laboratory. Second‐year students had somewhat greater challenges and less positive attitudes in learning anatomy than first‐year students. Females reported slightly greater challenges and less confidence in learning anatomy than males. Total scores on summative gross anatomy examination questions correlated with ALEQ‐27, Pearson's r = 0.222 and 0.271, in years 1 and 2, respectively, and with Factor 1, r = 0.479 and 0.317 (all statistically significant). Factor 1 also had similar correlations across different question types (multiple choice; short answer or essay; cadaveric; and anatomical models, bones, or radiological images). In a retrospective analysis, Factor 1 predicted poor end‐of‐semester anatomy examination results in year 1 with a sensitivity of 88% and positive predictive value of 33%. Further development of ALEQ‐27 may enable deeper understanding of students' learning of anatomy, and its ten‐item Factor 1 may be a useful screening tool to identify at‐risk students. Anat Sci Educ 10: 514–527. © 2017 American Association of Anatomists.  相似文献   

14.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

15.
Previous research has explored the experiences of medical students using body painting as a learning tool. However, to date, faculty experiences and views have not been explored. This international qualitative study utilized a grounded theory approach with data collection through interviews with academics and clinicians who utilized body painting as part of their anatomical teaching. Twenty‐six anatomists participated in the study from 14 centers worldwide. Three themes emerged from the data: (1) the efficacy of body painting, (2) the promotion of knowledge retention and recall, (3) considerations and practicalities regarding the use of body painting as a teaching tool. Subthemes show that body painting is used as an adjunct to the curriculum for teaching surface anatomy and peer examination. Benefits included diffusing the formal curricula, high student engagement and learning for future clinical practice. Body painting was advocated for promoting knowledge retention and recall, particularly learning through the process of cognitive load due to combining the use of color and kinesthetic learning with anatomical theory. Critical discussions surfaced on the topic of undressing in the classroom due to cultural and personal considerations possibly leading to unequal involvement and different learning experiences. Overall results support previous research showing that anatomists appreciate body painting as an effective, enjoyable, engaging and cost efficient adjunct to the multimodal anatomy curriculum. The role of cognitive load theory in learning anatomy through body painting emerged from the data as a possible theoretical framework supporting learning benefits from body painting and is suggested for further investigation. Anat Sci Educ 11: 146–154. © 2017 American Association of Anatomists.  相似文献   

16.
The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been assessed. The final year undergraduate physical therapy and occupational therapy students had respiratory anatomy teaching over two sessions. The teaching involved case-based learning and integrated anatomy lectures (vertical integration) with the Anatomy department. Pretest and immediate and follow-up post-tests were conducted to assess the effectiveness of the innovative methods. A feedback questionnaire was marked to grade case-based learning. The method of integrated and case-based teaching was appreciated and found to be useful in imparting knowledge to the students. Students retained the gained knowledge adequately and the same was inferred by statistically significant improvement in both post-test scores. Vertical integration of anatomy in the final year reinforces their existing knowledge of anatomy. Case-based learning may facilitate the development of effective and clinically sound therapists.  相似文献   

17.
Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point‐of‐care imaging in the future. To investigate whether using short sessions of in vivo imaging using ultrasonography could benefit students' anatomical knowledge and clinical application, we conducted a 2‐hour session on abdominal anatomy using ultrasonography in small groups of five to six students, for both first‐ and second‐year student cohorts. Individual feedback was collected to assess student perceptions. To measure retention and understanding, a short examination containing ultrasound images and questions and performance of a clinical skill (gastrointestinal' tract examination) were assessed. Ultrasonography sessions were highly valued by the students, with 90% of the students reporting their understanding was improved, and over 70% reporting increased confidence in their anatomical knowledge. However, the assessments showed no appreciable impact on skills or understanding related to abdominal anatomy and examination. We conclude that the risk associated with limited exposure increasing confidence without increasing skills remains real and that in vivo imaging is not effective when used as a short adjunct teaching tool. The widespread use of ultrasonography means finding the best way to incorporate ultrasound into medical education remains important. To this end, we are currently implementing an extended program including echocardiography and multiple anatomical sessions that will determine if frequency and repetition of use can positively impact on student performance and understanding. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

18.
There are concerns in the literature that the use of case‐based teaching of anatomy could be compromising the depth and scope of anatomy learned by students in a problem‐based learning curriculum. Poor selection of clinical cases that are used as vehicles for teaching/learning anatomy may be the root problem because some clinical cases do not provide enough opportunities to learn anatomy and are, therefore, inappropriate for case‐based teaching. Although anatomy educators are expected to respond to the identified deficiencies of case‐based anatomy teaching, making sure that students acquire sufficient anatomical knowledge to practice safely and successfully, there are no tools available that can help improve the selection of clinical cases for case‐based teaching. The author proposes a composite index, which incorporates considerations of anatomical knowledge for evaluating clinical cases/conditions for suitability in case‐based anatomy teaching. The development of the case anatomical knowledge index (CAKI) using a modified Guttman procedure is described. The scalability of the index was measured using the coefficient of reproducibility. A total of 47 clinicians participated in the validation activities that measured interrater and intraclass reliability. The CAKI was able to consistently discriminate between clinical cases/conditions with higher demand for anatomical knowledge than those with lower demand for anatomical knowledge. A review of the literature suggests that such an index has not been previously reported. Given the concerns about the depth and scope of anatomy learning in case‐based teaching, these findings have international relevance. Anat Sci Ed 2:9–18, 2009. © 2009 American Association of Anatomists.  相似文献   

19.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

20.
The one‐minute preceptor (OMP) is a time‐efficient, learner‐centered teaching method used in a busy ambulatory care setting. This project evaluated the effects of training experienced anatomy teachers in the use of the OMP in the gross anatomy laboratory on students' perceived learning. Second‐year medical students from a five‐year, undergraduate‐entry, system‐ and problem‐based medical program were divided randomly into two groups of 76 students each. The groups took part in the same gross anatomy laboratory session on different dates, supervised by the same two teachers (both with over 25 years of teaching experience). The teachers attended a workshop on the use of the OMP between the two sessions. Students were given a questionnaire at the end of the two sessions to indicate their agreements to statements regarding their learning experiences. Semistructured interviews were conducted with the two teachers after the second session. Results showed that training experienced anatomy teachers in the use of the OMP did not result in improvement of student learning perception in the gross anatomy laboratory. The experienced teachers have developed their own approaches with elements similar to those in the OMP: being learner centered and adaptable to individual student's needs, providing feedback, and enhancing teacher immediacy. They do not have an explicit structure such as the OMP, and are thus flexible and adaptive. Confining the teachers' teaching behaviors to the OMP structure could limit their performance. Although there are theoretical advantages for novice teachers in adopting the OMP technique, these advantages still need to be supported by further studies. Anat Sci Educ 7: 124–129. © 2013 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号